$NetBSD: patch-an,v 1.4 2020/08/18 05:12:55 tnn Exp $ --- machine/m_netbsd20.c.orig 2020-08-18 05:08:35.740015522 +0000 +++ machine/m_netbsd20.c @@ -0,0 +1,898 @@ +/* NetBSD: m_netbsd15.c,v 1.22 2004/02/13 11:36:24 wiz Exp */ + +/* + * top - a top users display for Unix + * + * SYNOPSIS: For a NetBSD-1.5 (or later) system + * + * DESCRIPTION: + * Originally written for BSD4.4 system by Christos Zoulas. + * Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider. + * NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn. + * NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green. + * NetBSD-1.4/UVM port by matthew green. + * NetBSD-1.5 port by Simon Burge. + * NetBSD-1.6/UBC port by Tomas Svensson. + * - + * This is the machine-dependent module for NetBSD-1.5 and later + * works for: + * NetBSD-1.6ZC + * and should work for: + * NetBSD-2.0 (when released) + * - + * top does not need to be installed setuid or setgid with this module. + * + * LIBS: -lkvm + * + * CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR + * + * AUTHORS: Christos Zoulas + * Steven Wallace + * Wolfram Schneider + * Arne Helme + * Luke Mewburn + * matthew green + * Simon Burge + * Tomas Svensson + * + * + * Id: m_netbsd15.c,v 1.22 2004/02/13 11:36:24 wiz Exp + */ +#include +#include + +#if __NetBSD_Version__ < 105290000 +# include "m_netbsd15.c" +#elif __NetBSD_Version__ < 106290000 +# include "m_netbsd16.c" +#else + +#ifndef lint +__RCSID("NetBSD: m_netbsd15.c,v 1.22 2004/02/13 11:36:24 wiz Exp "); +#endif + +#include +#include +#include + +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "os.h" +#include "top.h" +#include "machine.h" +#include "utils.h" +#include "display.h" +#include "loadavg.h" + +void percentages64 __P((int, int *, u_int64_t *, u_int64_t *, u_int64_t *)); + + +/* get_process_info passes back a handle. This is what it looks like: */ + +struct handle { + struct kinfo_proc2 **next_proc; /* points to next valid proc pointer */ + int remaining; /* number of pointers remaining */ +}; + +/* define what weighted CPU is. */ +#define weighted_cpu(pct, pp) ((pp)->p_swtime == 0 ? 0.0 : \ + ((pct) / (1.0 - exp((pp)->p_swtime * logcpu)))) + +/* what we consider to be process size: */ +#define PROCSIZE(pp) \ + ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize) + + +/* + * These definitions control the format of the per-process area + */ + +static char header[] = + " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; +/* 0123456 -- field to fill in starts at header+6 */ +#define UNAME_START 6 + +#define Proc_format \ + "%5d %-8.8s %3d %4d%7s %5s %-8.8s%7s %5.2f%% %5.2f%% %.12s" + + +/* + * Process state names for the "STATE" column of the display. + */ + +const char *state_abbrev[] = { + "", "START", "RUN", "SLEEP", "STOP", "ZOMB", "DEAD", "CPU" +}; + +static kvm_t *kd; + +/* these are retrieved from the kernel in _init */ + +static double logcpu; +static int hz; +static int ccpu; + +/* these are for calculating CPU state percentages */ + +static int ncpu = 0; +static u_int64_t *cp_time; +static u_int64_t *cp_old; +static u_int64_t *cp_diff; + +/* these are for detailing the process states */ + +int process_states[8]; +char *procstatenames[] = { + "", " starting, ", " runnable, ", " sleeping, ", " stopped, ", + " zombie, ", " dead, ", " on processor, ", + NULL +}; + +/* these are for detailing the CPU states */ + +int *cpu_states; +char *cpustatenames[] = { + "user", "nice", "system", "interrupt", "idle", NULL +}; + +/* these are for detailing the memory statistics */ + +long memory_stats[7]; +char *memorynames[] = { + "K Act, ", "K Inact, ", "K Wired, ", "K Exec, ", "K File, ", + "K Free, ", + NULL +}; + +long swap_stats[4]; +char *swapnames[] = { + "K Total, ", "K Used, ", "K Free, ", + NULL +}; + + +/* these are names given to allowed sorting orders -- first is default */ +char *ordernames[] = { + "cpu", + "pri", + "res", + "size", + "state", + "time", + NULL +}; + +/* forward definitions for comparison functions */ +static int compare_cpu __P((struct proc **, struct proc **)); +static int compare_prio __P((struct proc **, struct proc **)); +static int compare_res __P((struct proc **, struct proc **)); +static int compare_size __P((struct proc **, struct proc **)); +static int compare_state __P((struct proc **, struct proc **)); +static int compare_time __P((struct proc **, struct proc **)); + +int (*proc_compares[]) __P((struct proc **, struct proc **)) = { + compare_cpu, + compare_size, + compare_res, + compare_time, + compare_prio, + compare_state, + NULL +}; + + +/* these are for keeping track of the proc array */ + +static int nproc; +static int onproc = -1; +static int pref_len; +static struct kinfo_proc2 *pbase; +static struct kinfo_proc2 **pref; + +/* these are for getting the memory statistics */ + +static int pageshift; /* log base 2 of the pagesize */ + +/* define pagetok in terms of pageshift */ + +#define pagetok(size) ((size) << pageshift) + +int +machine_init(statics) + struct statics *statics; +{ + int pagesize; + int mib[2]; + size_t size; + struct clockinfo clockinfo; + + if ((kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, "kvm_open")) == NULL) + return -1; + + mib[0] = CTL_HW; + mib[1] = HW_NCPU; + size = sizeof(ncpu); + if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1) { + fprintf(stderr, "top: sysctl hw.ncpu failed: %s\n", + strerror(errno)); + return(-1); + } + cp_time = malloc(sizeof(cp_time[0]) * CPUSTATES * ncpu); + mib[0] = CTL_KERN; + mib[1] = KERN_CP_TIME; + size = sizeof(cp_time[0]) * CPUSTATES * ncpu; + if (sysctl(mib, 2, cp_time, &size, NULL, 0) < 0) { + fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n", + strerror(errno)); + return(-1); + } + /* Handle old call that returned only aggregate */ + if (size == sizeof(cp_time[0]) * CPUSTATES) + ncpu = 1; + + cpu_states = malloc(sizeof(cpu_states[0]) * CPUSTATES * ncpu); + cp_old = malloc(sizeof(cp_old[0]) * CPUSTATES * ncpu); + cp_diff = malloc(sizeof(cp_diff[0]) * CPUSTATES * ncpu); + if (cpu_states == NULL || cp_time == NULL || cp_old == NULL || + cp_diff == NULL) { + fprintf(stderr, "top: machine_init: %s\n", + strerror(errno)); + return(-1); + } + + mib[0] = CTL_KERN; + mib[1] = KERN_CCPU; + size = sizeof(ccpu); + if (sysctl(mib, 2, &ccpu, &size, NULL, 0) == -1) { + fprintf(stderr, "top: sysctl kern.ccpu failed: %s\n", + strerror(errno)); + return(-1); + } + + mib[0] = CTL_KERN; + mib[1] = KERN_CLOCKRATE; + size = sizeof(clockinfo); + if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) == -1) { + fprintf(stderr, "top: sysctl kern.clockrate failed: %s\n", + strerror(errno)); + return(-1); + } + hz = clockinfo.stathz; + + /* this is used in calculating WCPU -- calculate it ahead of time */ + logcpu = log(loaddouble(ccpu)); + + pbase = NULL; + pref = NULL; + nproc = 0; + onproc = -1; + /* get the page size with "getpagesize" and calculate pageshift from it */ + pagesize = getpagesize(); + pageshift = 0; + while (pagesize > 1) { + pageshift++; + pagesize >>= 1; + } + + /* we only need the amount of log(2)1024 for our conversion */ + pageshift -= LOG1024; + + /* fill in the statics information */ +#ifdef notyet + statics->ncpu = ncpu; +#endif + statics->procstate_names = procstatenames; + statics->cpustate_names = cpustatenames; + statics->memory_names = memorynames; + statics->swap_names = swapnames; + statics->order_names = ordernames; + + /* all done! */ + return(0); +} + +char * +format_header(uname_field) + char *uname_field; +{ + char *ptr; + + ptr = header + UNAME_START; + while (*uname_field != '\0') { + *ptr++ = *uname_field++; + } + + return(header); +} + +void +get_system_info(si) + struct system_info *si; +{ + size_t ssize; + int mib[2]; + struct uvmexp_sysctl uvmexp; + struct swapent *sep, *seporig; + u_int64_t totalsize, totalinuse; + int size, inuse, ncounted, i; + int rnswap, nswap; + + mib[0] = CTL_KERN; + mib[1] = KERN_CP_TIME; + ssize = sizeof(cp_time[0]) * CPUSTATES * ncpu; + if (sysctl(mib, 2, cp_time, &ssize, NULL, 0) < 0) { + fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n", + strerror(errno)); + quit(23); + } + + if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) { + int i; + + warn("can't getloadavg"); + for (i = 0; i < NUM_AVERAGES; i++) + si->load_avg[i] = 0.0; + } + + /* convert cp_time counts to percentages */ + for (i = 0; i < ncpu; i++) { + int j = i * CPUSTATES; + percentages64(CPUSTATES, cpu_states + j, cp_time + j, cp_old + j, + cp_diff + j); + } + + mib[0] = CTL_VM; + mib[1] = VM_UVMEXP2; + ssize = sizeof(uvmexp); + if (sysctl(mib, 2, &uvmexp, &ssize, NULL, 0) < 0) { + fprintf(stderr, "top: sysctl vm.uvmexp2 failed: %s\n", + strerror(errno)); + quit(23); + } + + /* convert memory stats to Kbytes */ + memory_stats[0] = pagetok(uvmexp.active); + memory_stats[1] = pagetok(uvmexp.inactive); + memory_stats[2] = pagetok(uvmexp.wired); + memory_stats[3] = pagetok(uvmexp.execpages); + memory_stats[4] = pagetok(uvmexp.filepages); + memory_stats[5] = pagetok(uvmexp.free); + + swap_stats[0] = swap_stats[1] = swap_stats[2] = 0; + + seporig = NULL; + do { + nswap = swapctl(SWAP_NSWAP, 0, 0); + if (nswap < 1) + break; + /* Use seporig to keep track of the malloc'd memory + * base, as sep will be incremented in the for loop + * below. + */ + seporig = sep = (struct swapent *)malloc(nswap * sizeof(*sep)); + if (sep == NULL) + break; + rnswap = swapctl(SWAP_STATS, (void *)sep, nswap); + if (nswap != rnswap) + break; + + totalsize = totalinuse = ncounted = 0; + for (; rnswap-- > 0; sep++) { + ncounted++; + size = sep->se_nblks; + inuse = sep->se_inuse; + totalsize += size; + totalinuse += inuse; + } + swap_stats[0] = dbtob(totalsize) / 1024; + swap_stats[1] = dbtob(totalinuse) / 1024; + swap_stats[2] = dbtob(totalsize) / 1024 - swap_stats[1]; + /* Free here, before we malloc again in the next + * iteration of this loop. + */ + if (seporig) { + free(seporig); + seporig = NULL; + } + } while (0); + /* Catch the case where we malloc'd, but then exited the + * loop due to nswap != rnswap. + */ + if (seporig) + free(seporig); + + memory_stats[6] = -1; + swap_stats[3] = -1; + + /* set arrays and strings */ + si->cpustates = cpu_states; + si->memory = memory_stats; + si->swap = swap_stats; + si->last_pid = -1; +} + + +caddr_t +get_process_info(si, sel, compare_index) + struct system_info *si; + struct process_select *sel; + int compare_index; +{ + int i; + int total_procs; + int active_procs; + struct kinfo_proc2 **prefp, **n; + struct kinfo_proc2 *pp; + + /* these are copied out of sel for speed */ + int show_idle; + int show_system; + int show_uid; + int show_command; + + static struct handle handle; + + + pbase = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), &nproc); + if (pbase == NULL) { + (void) fprintf(stderr, "top: Out of memory.\n"); + quit(23); + } + if (nproc > onproc) { + n = (struct kinfo_proc2 **) realloc(pref, + sizeof(struct kinfo_proc2 *) * nproc); + if (n == NULL) { + (void) fprintf(stderr, "top: Out of memory.\n"); + quit(23); + } + pref = n; + onproc = nproc; + } + /* get a pointer to the states summary array */ + si->procstates = process_states; + + /* set up flags which define what we are going to select */ + show_idle = sel->idle; + show_system = sel->system; + show_uid = sel->uid != -1; + show_command = sel->command != NULL; + + /* count up process states and get pointers to interesting procs */ + total_procs = 0; + active_procs = 0; + memset((char *)process_states, 0, sizeof(process_states)); + prefp = pref; + for (pp = pbase, i = 0; i < nproc; pp++, i++) { + + /* + * Place pointers to each valid proc structure in pref[]. + * Process slots that are actually in use have a non-zero + * status field. Processes with P_SYSTEM set are system + * processes---these get ignored unless show_sysprocs is set. + */ + if (pp->p_stat != 0 && (show_system || ((pp->p_flag & P_SYSTEM) == 0))) { + total_procs++; + process_states[(unsigned char) pp->p_stat]++; + if (pp->p_stat != LSZOMB && +#ifdef LSDEAD + pp->p_stat != LSDEAD && +#endif + (show_idle || (pp->p_pctcpu != 0) || + (pp->p_stat == LSRUN || pp->p_stat == LSONPROC)) && + (!show_uid || pp->p_ruid == (uid_t)sel->uid)) { + *prefp++ = pp; + active_procs++; + } + } + } + + /* if requested, sort the "interesting" processes */ + qsort((char *)pref, active_procs, sizeof(struct kinfo_proc2 *), + (int (*) __P((const void *, const void *))) + proc_compares[compare_index]); + + /* remember active and total counts */ + si->p_total = total_procs; + si->p_active = pref_len = active_procs; + + /* pass back a handle */ + handle.next_proc = pref; + handle.remaining = active_procs; + return((caddr_t)&handle); +} + + +char * +format_next_process(handle, get_userid) + caddr_t handle; + char *(*get_userid) __P((int)); +{ + struct kinfo_proc2 *pp; + long cputime; + double pct; + struct handle *hp; + const char *statep; +#ifdef KI_NOCPU + char state[10]; +#endif + char wmesg[KI_WMESGLEN + 1]; + static char fmt[128]; /* static area where result is built */ + char *pretty = ""; + + /* find and remember the next proc structure */ + hp = (struct handle *)handle; + pp = *(hp->next_proc++); + hp->remaining--; + + /* get the process's user struct and set cputime */ + if ((pp->p_flag & L_INMEM) == 0) + pretty = "<>"; + else if ((pp->p_flag & P_SYSTEM) != 0) + pretty = "[]"; + + if (pretty[0] != '\0') { + /* + * Print swapped processes as and + * system processes as [pname] + */ + char *comm = pp->p_comm; +#define COMSIZ sizeof(pp->p_comm) + char buf[COMSIZ]; + (void) strncpy(buf, comm, COMSIZ); + comm[0] = pretty[0]; + (void) strncpy(&comm[1], buf, COMSIZ - 2); + comm[COMSIZ - 2] = '\0'; + (void) strncat(comm, &pretty[1], COMSIZ - 1); + comm[COMSIZ - 1] = '\0'; + } + +#if 0 + /* This does not produce the correct results */ + cputime = pp->p_uticks + pp->p_sticks + pp->p_iticks; +#else + cputime = pp->p_rtime_sec; /* This does not count interrupts */ +#endif + + /* calculate the base for CPU percentages */ + pct = pctdouble(pp->p_pctcpu); + + if (pp->p_stat == LSSLEEP) { + strlcpy(wmesg, pp->p_wmesg, sizeof(wmesg)); + statep = wmesg; + } else + statep = state_abbrev[(unsigned)pp->p_stat]; + +#ifdef KI_NOCPU + /* Post-1.5 change: add CPU number if appropriate */ + if (pp->p_cpuid != KI_NOCPU) { + switch (pp->p_stat) { + case LSONPROC: + case LSRUN: + case LSSLEEP: + snprintf(state, sizeof(state), "%.6s/%lld", + statep, (long long)pp->p_cpuid); + statep = state; + break; + } + } +#endif + /* format this entry */ + sprintf(fmt, + Proc_format, + pp->p_pid, + (*get_userid)(pp->p_ruid), + pp->p_priority - PZERO, + pp->p_nice - NZERO, + format_k(pagetok(PROCSIZE(pp))), + format_k(pagetok(pp->p_vm_rssize)), + statep, + format_time(cputime), + 100.0 * weighted_cpu(pct, pp), + 100.0 * pct, + printable(pp->p_comm)); + + /* return the result */ + return(fmt); +} + +/* comparison routines for qsort */ + +/* + * There are currently four possible comparison routines. main selects + * one of these by indexing in to the array proc_compares. + * + * Possible keys are defined as macros below. Currently these keys are + * defined: percent CPU, CPU ticks, process state, resident set size, + * total virtual memory usage. The process states are ordered as follows + * (from least to most important): WAIT, zombie, sleep, stop, start, run. + * The array declaration below maps a process state index into a number + * that reflects this ordering. + */ + +/* + * First, the possible comparison keys. These are defined in such a way + * that they can be merely listed in the source code to define the actual + * desired ordering. + */ + +#define ORDERKEY_PCTCPU \ + if (lresult = (pctcpu)(p2)->p_pctcpu - (pctcpu)(p1)->p_pctcpu,\ + (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) + +#define ORDERKEY_CPTICKS \ + if (lresult = (pctcpu)(p2)->p_rtime_sec \ + - (pctcpu)(p1)->p_rtime_sec,\ + (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) + +#define ORDERKEY_STATE \ + if ((result = sorted_state[(int)(p2)->p_stat] - \ + sorted_state[(int)(p1)->p_stat] ) == 0) + +#define ORDERKEY_PRIO \ + if ((result = (p2)->p_priority - (p1)->p_priority) == 0) + +#define ORDERKEY_RSSIZE \ + if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0) + +#define ORDERKEY_MEM \ + if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0) + +/* + * Now the array that maps process state to a weight. + * The order of the elements should match those in state_abbrev[] + */ + +static int sorted_state[] = { + 0, /* (not used) ? */ + 6, /* "start" SIDL */ + 4, /* "run" SRUN */ + 3, /* "sleep" SSLEEP */ + 3, /* "stop" SSTOP */ + 2, /* "dead" SDEAD */ + 1, /* "zomb" SZOMB */ + 5, /* "onproc" SONPROC */ +}; + +/* compare_cpu - the comparison function for sorting by CPU percentage */ + +static int +compare_cpu(pp1, pp2) + struct proc **pp1, **pp2; +{ + struct kinfo_proc2 *p1; + struct kinfo_proc2 *p2; + int result; + pctcpu lresult; + + /* remove one level of indirection */ + p1 = *(struct kinfo_proc2 **) pp1; + p2 = *(struct kinfo_proc2 **) pp2; + + ORDERKEY_PCTCPU + ORDERKEY_CPTICKS + ORDERKEY_STATE + ORDERKEY_PRIO + ORDERKEY_RSSIZE + ORDERKEY_MEM + ; + + return (result); +} + +/* compare_prio - the comparison function for sorting by process priority */ + +static int +compare_prio(pp1, pp2) + struct proc **pp1, **pp2; +{ + struct kinfo_proc2 *p1; + struct kinfo_proc2 *p2; + int result; + pctcpu lresult; + + /* remove one level of indirection */ + p1 = *(struct kinfo_proc2 **) pp1; + p2 = *(struct kinfo_proc2 **) pp2; + + ORDERKEY_PRIO + ORDERKEY_PCTCPU + ORDERKEY_CPTICKS + ORDERKEY_STATE + ORDERKEY_RSSIZE + ORDERKEY_MEM + ; + + return (result); +} + +/* compare_res - the comparison function for sorting by resident set size */ + +static int +compare_res(pp1, pp2) + struct proc **pp1, **pp2; +{ + struct kinfo_proc2 *p1; + struct kinfo_proc2 *p2; + int result; + pctcpu lresult; + + /* remove one level of indirection */ + p1 = *(struct kinfo_proc2 **) pp1; + p2 = *(struct kinfo_proc2 **) pp2; + + ORDERKEY_RSSIZE + ORDERKEY_MEM + ORDERKEY_PCTCPU + ORDERKEY_CPTICKS + ORDERKEY_STATE + ORDERKEY_PRIO + ; + + return (result); +} + +/* compare_size - the comparison function for sorting by total memory usage */ + +static int +compare_size(pp1, pp2) + struct proc **pp1, **pp2; +{ + struct kinfo_proc2 *p1; + struct kinfo_proc2 *p2; + int result; + pctcpu lresult; + + /* remove one level of indirection */ + p1 = *(struct kinfo_proc2 **) pp1; + p2 = *(struct kinfo_proc2 **) pp2; + + ORDERKEY_MEM + ORDERKEY_RSSIZE + ORDERKEY_PCTCPU + ORDERKEY_CPTICKS + ORDERKEY_STATE + ORDERKEY_PRIO + ; + + return (result); +} + +/* compare_state - the comparison function for sorting by process state */ + +static int +compare_state(pp1, pp2) + struct proc **pp1, **pp2; +{ + struct kinfo_proc2 *p1; + struct kinfo_proc2 *p2; + int result; + pctcpu lresult; + + /* remove one level of indirection */ + p1 = *(struct kinfo_proc2 **) pp1; + p2 = *(struct kinfo_proc2 **) pp2; + + ORDERKEY_STATE + ORDERKEY_PCTCPU + ORDERKEY_CPTICKS + ORDERKEY_PRIO + ORDERKEY_RSSIZE + ORDERKEY_MEM + ; + + return (result); +} + +/* compare_time - the comparison function for sorting by total CPU time */ + +static int +compare_time(pp1, pp2) + struct proc **pp1, **pp2; +{ + struct kinfo_proc2 *p1; + struct kinfo_proc2 *p2; + int result; + pctcpu lresult; + + /* remove one level of indirection */ + p1 = *(struct kinfo_proc2 **) pp1; + p2 = *(struct kinfo_proc2 **) pp2; + + ORDERKEY_CPTICKS + ORDERKEY_PCTCPU + ORDERKEY_STATE + ORDERKEY_PRIO + ORDERKEY_MEM + ORDERKEY_RSSIZE + ; + + return (result); +} + + +/* + * proc_owner(pid) - returns the uid that owns process "pid", or -1 if + * the process does not exist. + * It is EXTREMLY IMPORTANT that this function work correctly. + * If top runs setuid root (as in SVR4), then this function + * is the only thing that stands in the way of a serious + * security problem. It validates requests for the "kill" + * and "renice" commands. + */ + +int +proc_owner(pid) + int pid; +{ + int cnt; + struct kinfo_proc2 **prefp; + struct kinfo_proc2 *pp; + + prefp = pref; + cnt = pref_len; + while (--cnt >= 0) { + pp = *prefp++; + if (pp->p_pid == (pid_t)pid) + return(pp->p_ruid); + } + return(-1); +} + +/* + * percentages(cnt, out, new, old, diffs) - calculate percentage change + * between array "old" and "new", putting the percentages i "out". + * "cnt" is size of each array and "diffs" is used for scratch space. + * The array "old" is updated on each call. + * The routine assumes modulo arithmetic. This function is especially + * useful on BSD mchines for calculating CPU state percentages. + */ + +void +percentages64(cnt, out, new, old, diffs) + int cnt; + int *out; + u_int64_t *new; + u_int64_t *old; + u_int64_t *diffs; +{ + int i; + u_int64_t change; + u_int64_t total_change; + u_int64_t *dp; + u_int64_t half_total; + + /* initialization */ + total_change = 0; + dp = diffs; + + /* calculate changes for each state and the overall change */ + for (i = 0; i < cnt; i++) { + /* + * Don't worry about wrapping - even at hz=1GHz, a + * u_int64_t will last at least 544 years. + */ + change = *new - *old; + total_change += (*dp++ = change); + *old++ = *new++; + } + + /* avoid divide by zero potential */ + if (total_change == 0) + total_change = 1; + + /* calculate percentages based on overall change, rounding up */ + half_total = total_change / 2; + for (i = 0; i < cnt; i++) + *out++ = (int)((*diffs++ * 1000 + half_total) / total_change); +} +#endif