/* $NetBSD: softfloat-specialize.h,v 1.3 2020/09/02 03:41:56 thorpej Exp $ */ /* This is a derivative work. */ /*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Ross Harvey. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*============================================================================ This C source fragment is part of the Berkeley SoftFloat IEEE Floating-Point Arithmetic Package, Release 2c, by John R. Hauser. THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE SOFTWARE. Derivative works require also that (1) the source code for the derivative work includes prominent notice that the work is derivative, and (2) the source code includes prominent notice of these three paragraphs for those parts of this code that are retained. =============================================================================*/ /*---------------------------------------------------------------------------- | Underflow tininess-detection mode, statically initialized to default value. | (The declaration in `softfloat.h' must match the `int8' type here.) *----------------------------------------------------------------------------*/ /* [ MP safe, does not change dynamically ] */ int float_detect_tininess = float_tininess_after_rounding; /*---------------------------------------------------------------------------- | Internal canonical NaN format. *----------------------------------------------------------------------------*/ typedef struct { flag sign; bits64 high, low; } commonNaNT; /*---------------------------------------------------------------------------- | The pattern for a default generated single-precision NaN. *----------------------------------------------------------------------------*/ #define float32_default_nan 0xFFC00000 /*---------------------------------------------------------------------------- | Returns 1 if the single-precision floating-point value `a' is a NaN; | otherwise returns 0. *----------------------------------------------------------------------------*/ static flag float32_is_nan( float32 a ) { return ( 0xFF000000 < (bits32) ( a<<1 ) ); } /*---------------------------------------------------------------------------- | Returns 1 if the single-precision floating-point value `a' is a signaling | NaN; otherwise returns 0. *----------------------------------------------------------------------------*/ flag float32_is_signaling_nan( float32 a ) { return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); } /*---------------------------------------------------------------------------- | Returns the result of converting the single-precision floating-point NaN | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | exception is raised. *----------------------------------------------------------------------------*/ static commonNaNT float32ToCommonNaN( float32 a ) { commonNaNT z; if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); z.sign = a>>31; z.low = 0; z.high = ( (bits64) a )<<41; return z; } /*---------------------------------------------------------------------------- | Returns the result of converting the canonical NaN `a' to the single- | precision floating-point format. *----------------------------------------------------------------------------*/ static float32 commonNaNToFloat32( commonNaNT a ) { return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); } /*---------------------------------------------------------------------------- | Takes two single-precision floating-point values `a' and `b', one of which | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | signaling NaN, the invalid exception is raised. *----------------------------------------------------------------------------*/ static float32 propagateFloat32NaN( float32 a, float32 b ) { flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; aIsNaN = float32_is_nan( a ); aIsSignalingNaN = float32_is_signaling_nan( a ); bIsNaN = float32_is_nan( b ); bIsSignalingNaN = float32_is_signaling_nan( b ); a |= 0x00400000; b |= 0x00400000; if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); if ( aIsSignalingNaN ) { if ( bIsSignalingNaN ) goto returnLargerSignificand; return bIsNaN ? b : a; } else if ( aIsNaN ) { if ( bIsSignalingNaN | ! bIsNaN ) return a; returnLargerSignificand: if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b; if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a; return ( a < b ) ? a : b; } else { return b; } } /* * float64_default_nan, float64_is_nan(), float64_is_signaling_nan() * have moved to softfloat.h. */ /*---------------------------------------------------------------------------- | Returns the result of converting the double-precision floating-point NaN | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | exception is raised. *----------------------------------------------------------------------------*/ static commonNaNT float64ToCommonNaN( float64 a ) { commonNaNT z; if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); z.sign = a>>63; z.low = 0; z.high = a<<12; return z; } /*---------------------------------------------------------------------------- | Returns the result of converting the canonical NaN `a' to the double- | precision floating-point format. *----------------------------------------------------------------------------*/ static float64 commonNaNToFloat64( commonNaNT a ) { return ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FF8000000000000 ) | ( a.high>>12 ); } /*---------------------------------------------------------------------------- | Takes two double-precision floating-point values `a' and `b', one of which | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | signaling NaN, the invalid exception is raised. *----------------------------------------------------------------------------*/ static float64 propagateFloat64NaN( float64 a, float64 b ) { flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; aIsNaN = float64_is_nan( a ); aIsSignalingNaN = float64_is_signaling_nan( a ); bIsNaN = float64_is_nan( b ); bIsSignalingNaN = float64_is_signaling_nan( b ); a |= LIT64( 0x0008000000000000 ); b |= LIT64( 0x0008000000000000 ); if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); if ( aIsSignalingNaN ) { if ( bIsSignalingNaN ) goto returnLargerSignificand; return bIsNaN ? b : a; } else if ( aIsNaN ) { if ( bIsSignalingNaN | ! bIsNaN ) return a; returnLargerSignificand: if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b; if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a; return ( a < b ) ? a : b; } else { return b; } } #ifdef FLOATX80 /*---------------------------------------------------------------------------- | The pattern for a default generated double-extended-precision NaN. | The `high' and `low' values hold the most- and least-significant bits, | respectively. *----------------------------------------------------------------------------*/ #define floatx80_default_nan_high 0xFFFF #define floatx80_default_nan_low LIT64( 0xC000000000000000 ) /*---------------------------------------------------------------------------- | Returns 1 if the double-extended-precision floating-point value `a' is a | NaN; otherwise returns 0. *----------------------------------------------------------------------------*/ static flag floatx80_is_nan( floatx80 a ) { return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); } /*---------------------------------------------------------------------------- | Returns 1 if the double-extended-precision floating-point value `a' is a | signaling NaN; otherwise returns 0. *----------------------------------------------------------------------------*/ flag floatx80_is_signaling_nan( floatx80 a ) { bits64 aLow; aLow = a.low & ~ LIT64( 0x4000000000000000 ); return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( aLow<<1 ) && ( a.low == aLow ); } /*---------------------------------------------------------------------------- | Returns the result of converting the double-extended-precision floating- | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the | invalid exception is raised. *----------------------------------------------------------------------------*/ static commonNaNT floatx80ToCommonNaN( floatx80 a ) { commonNaNT z; if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); z.sign = a.high>>15; z.low = 0; z.high = a.low<<1; return z; } /*---------------------------------------------------------------------------- | Returns the result of converting the canonical NaN `a' to the double- | extended-precision floating-point format. *----------------------------------------------------------------------------*/ static floatx80 commonNaNToFloatx80( commonNaNT a ) { floatx80 z; z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; return z; } /*---------------------------------------------------------------------------- | Takes two double-extended-precision floating-point values `a' and `b', one | of which is a NaN, and returns the appropriate NaN result. If either `a' or | `b' is a signaling NaN, the invalid exception is raised. *----------------------------------------------------------------------------*/ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) { flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; aIsNaN = floatx80_is_nan( a ); aIsSignalingNaN = floatx80_is_signaling_nan( a ); bIsNaN = floatx80_is_nan( b ); bIsSignalingNaN = floatx80_is_signaling_nan( b ); a.low |= LIT64( 0xC000000000000000 ); b.low |= LIT64( 0xC000000000000000 ); if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); if ( aIsSignalingNaN ) { if ( bIsSignalingNaN ) goto returnLargerSignificand; return bIsNaN ? b : a; } else if ( aIsNaN ) { if ( bIsSignalingNaN | ! bIsNaN ) return a; returnLargerSignificand: if ( a.low < b.low ) return b; if ( b.low < a.low ) return a; return ( a.high < b.high ) ? a : b; } else { return b; } } #endif #ifdef FLOAT128 /*---------------------------------------------------------------------------- | The pattern for a default generated quadruple-precision NaN. The `high' and | `low' values hold the most- and least-significant bits, respectively. *----------------------------------------------------------------------------*/ #define float128_default_nan_high LIT64( 0xFFFF800000000000 ) #define float128_default_nan_low LIT64( 0x0000000000000000 ) /*---------------------------------------------------------------------------- | Returns 1 if the quadruple-precision floating-point value `a' is a NaN; | otherwise returns 0. *----------------------------------------------------------------------------*/ flag float128_is_nan( float128 a ) { return ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); } /*---------------------------------------------------------------------------- | Returns 1 if the quadruple-precision floating-point value `a' is a | signaling NaN; otherwise returns 0. *----------------------------------------------------------------------------*/ flag float128_is_signaling_nan( float128 a ) { return ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); } /*---------------------------------------------------------------------------- | Returns the result of converting the quadruple-precision floating-point NaN | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | exception is raised. *----------------------------------------------------------------------------*/ static commonNaNT float128ToCommonNaN( float128 a ) { commonNaNT z; if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); z.sign = a.high>>63; shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); return z; } /*---------------------------------------------------------------------------- | Returns the result of converting the canonical NaN `a' to the quadruple- | precision floating-point format. *----------------------------------------------------------------------------*/ static float128 commonNaNToFloat128( commonNaNT a ) { float128 z; shift128Right( a.high, a.low, 16, &z.high, &z.low ); z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); return z; } /*---------------------------------------------------------------------------- | Takes two quadruple-precision floating-point values `a' and `b', one of | which is a NaN, and returns the appropriate NaN result. If either `a' or | `b' is a signaling NaN, the invalid exception is raised. *----------------------------------------------------------------------------*/ static float128 propagateFloat128NaN( float128 a, float128 b ) { flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; aIsNaN = float128_is_nan( a ); aIsSignalingNaN = float128_is_signaling_nan( a ); bIsNaN = float128_is_nan( b ); bIsSignalingNaN = float128_is_signaling_nan( b ); a.high |= LIT64( 0x0000800000000000 ); b.high |= LIT64( 0x0000800000000000 ); if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); if ( aIsSignalingNaN ) { if ( bIsSignalingNaN ) goto returnLargerSignificand; return bIsNaN ? b : a; } else if ( aIsNaN ) { if ( bIsSignalingNaN | ! bIsNaN ) return a; returnLargerSignificand: if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b; if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a; return ( a.high < b.high ) ? a : b; } else { return b; } } #endif