/* $NetBSD: subr_physmap.c,v 1.5 2021/09/06 20:55:08 andvar Exp $ */ /*- * Copyright (c) 2013 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of 3am Software Foundry. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(1, "$NetBSD: subr_physmap.c,v 1.5 2021/09/06 20:55:08 andvar Exp $"); #include #include #include #include #include #include /* * This file contain support routines used to create and destroy lists of * physical pages from lists of pages or ranges of virtual address. By using * these physical maps, the kernel can avoid mapping physical I/O in the * kernel's address space in most cases. */ typedef struct { physmap_t *pc_physmap; physmap_segment_t *pc_segs; vsize_t pc_offset; vsize_t pc_klen; vaddr_t pc_kva; u_int pc_nsegs; vm_prot_t pc_prot; bool pc_direct_mapped; } physmap_cookie_t; /* * Allocate a physmap structure that requires "maxsegs" segments. */ static physmap_t * physmap_alloc(size_t maxsegs) { const size_t mapsize = offsetof(physmap_t, pm_segs[maxsegs]); KASSERT(maxsegs > 0); physmap_t * const map = kmem_zalloc(mapsize, KM_SLEEP); map->pm_maxsegs = maxsegs; return map; } static int physmap_fill(physmap_t *map, pmap_t pmap, vaddr_t va, vsize_t len) { size_t nsegs = map->pm_nsegs; physmap_segment_t *ps = &map->pm_segs[nsegs]; vsize_t offset = va - trunc_page(va); if (nsegs == 0) { if (!pmap_extract(pmap, va, &ps->ps_addr)) { return EFAULT; } ps->ps_len = MIN(len, PAGE_SIZE - offset); if (ps->ps_len == len) { map->pm_nsegs = 1; return 0; } offset = 0; } else { /* * Backup to the last segment since we have to see if we can * merge virtual addresses that are physically contiguous into * as few segments as possible. */ ps--; nsegs--; } paddr_t lastaddr = ps->ps_addr + ps->ps_len; for (;;) { paddr_t curaddr; if (!pmap_extract(pmap, va, &curaddr)) { return EFAULT; } if (curaddr != lastaddr) { ps++; nsegs++; KASSERT(nsegs < map->pm_maxsegs); ps->ps_addr = curaddr; lastaddr = curaddr; } if (offset + len > PAGE_SIZE) { ps->ps_len += PAGE_SIZE - offset; lastaddr = ps->ps_addr + ps->ps_len; len -= PAGE_SIZE - offset; lastaddr += PAGE_SIZE - offset; offset = 0; } else { ps->ps_len += len; map->pm_nsegs = nsegs + 1; return 0; } } } /* * Create a physmap and populate it with the pages that are used to mapped * linear range of virtual addresses. It is assumed that uvm_vslock has been * called to lock these pages into memory. */ int physmap_create_linear(physmap_t **map_p, const struct vmspace *vs, vaddr_t va, vsize_t len) { const size_t maxsegs = atop(round_page(va + len) - trunc_page(va)); physmap_t * const map = physmap_alloc(maxsegs); int error = physmap_fill(map, vs->vm_map.pmap, va, len); if (error) { physmap_destroy(map); *map_p = NULL; return error; } *map_p = map; return 0; } /* * Create a physmap and populate it with the pages that are contained in an * iovec array. It is assumed that uvm_vslock has been called to lock these * pages into memory. */ int physmap_create_iov(physmap_t **map_p, const struct vmspace *vs, struct iovec *iov, size_t iovlen) { size_t maxsegs = 0; for (size_t i = 0; i < iovlen; i++) { const vaddr_t start = (vaddr_t) iov[i].iov_base; const vaddr_t end = start + iov[i].iov_len; maxsegs += atop(round_page(end) - trunc_page(start)); } physmap_t * const map = physmap_alloc(maxsegs); for (size_t i = 0; i < iovlen; i++) { int error = physmap_fill(map, vs->vm_map.pmap, (vaddr_t) iov[i].iov_base, iov[i].iov_len); if (error) { physmap_destroy(map); *map_p = NULL; return error; } } *map_p = map; return 0; } /* * This uses a list of vm_page structure to create a physmap. */ physmap_t * physmap_create_pagelist(struct vm_page **pgs, size_t npgs) { physmap_t * const map = physmap_alloc(npgs); physmap_segment_t *ps = map->pm_segs; /* * Initialize the first segment. */ paddr_t lastaddr = VM_PAGE_TO_PHYS(pgs[0]); ps->ps_addr = lastaddr; ps->ps_len = PAGE_SIZE; for (pgs++; npgs-- > 1; pgs++) { /* * lastaddr needs to be increased by a page. */ lastaddr += PAGE_SIZE; paddr_t curaddr = VM_PAGE_TO_PHYS(*pgs); if (curaddr != lastaddr) { /* * If the addresses are not the same, we need to use * a new segment. Set its address and update lastaddr. */ ps++; ps->ps_addr = curaddr; lastaddr = curaddr; } /* * Increase this segment's length by a page */ ps->ps_len += PAGE_SIZE; } map->pm_nsegs = ps + 1 - map->pm_segs; return map; } void physmap_destroy(physmap_t *map) { const size_t mapsize = offsetof(physmap_t, pm_segs[map->pm_maxsegs]); kmem_free(map, mapsize); } void * physmap_map_init(physmap_t *map, size_t offset, vm_prot_t prot) { physmap_cookie_t * const pc = kmem_zalloc(sizeof(*pc), KM_SLEEP); KASSERT(prot == VM_PROT_READ || prot == (VM_PROT_READ|VM_PROT_WRITE)); pc->pc_physmap = map; pc->pc_segs = map->pm_segs; pc->pc_nsegs = map->pm_nsegs; pc->pc_prot = prot; pc->pc_klen = 0; pc->pc_kva = 0; pc->pc_direct_mapped = false; /* * Skip to the first segment we are interested in. */ while (offset >= pc->pc_segs->ps_len) { offset -= pc->pc_segs->ps_len; pc->pc_segs++; pc->pc_nsegs--; } pc->pc_offset = offset; return pc; } size_t physmap_map(void *cookie, vaddr_t *kvap) { physmap_cookie_t * const pc = cookie; /* * If there is currently a non-direct mapped KVA region allocated, * free it now. */ if (pc->pc_kva != 0 && !pc->pc_direct_mapped) { pmap_kremove(pc->pc_kva, pc->pc_klen); pmap_update(pmap_kernel()); uvm_km_free(kernel_map, pc->pc_kva, pc->pc_klen, UVM_KMF_VAONLY); } /* * If there are no more segments to process, return 0 indicating * we are done. */ if (pc->pc_nsegs == 0) { return 0; } /* * Get starting physical address of this segment and its length. */ paddr_t pa = pc->pc_segs->ps_addr + pc->pc_offset; const size_t koff = pa & PAGE_MASK; const size_t len = pc->pc_segs->ps_len - pc->pc_offset; /* * Now that we have the starting offset in the page, reset to the * beginning of the page. */ pa = trunc_page(pa); /* * We are now done with this segment; advance to the next one. */ pc->pc_segs++; pc->pc_nsegs--; pc->pc_offset = 0; /* * Find out how many pages we are mapping. */ pc->pc_klen = round_page(len); #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS /* * Always try to direct map it since that's nearly zero cost. */ pc->pc_direct_mapped = mm_md_direct_mapped_phys(pa, &pc->pc_kva); #endif if (!pc->pc_direct_mapped) { /* * If we can't direct map it, we have to allocate some KVA * so we map it via the kernel_map. */ pc->pc_kva = uvm_km_alloc(kernel_map, pc->pc_klen, atop(pa) & uvmexp.colormask, UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH); KASSERT(pc->pc_kva != 0); /* * Setup mappings for this segment. */ for (size_t poff = 0; poff < pc->pc_klen; poff += PAGE_SIZE) { pmap_kenter_pa(pc->pc_kva + poff, pa + poff, pc->pc_prot, 0); } /* * Make them real. */ pmap_update(pmap_kernel()); } /* * Return the starting KVA (including offset into the page) and * the length of this segment. */ *kvap = pc->pc_kva + koff; return len; } void physmap_map_fini(void *cookie) { physmap_cookie_t * const pc = cookie; /* * If there is currently a non-direct mapped KVA region allocated, * free it now. */ if (pc->pc_kva != 0 && !pc->pc_direct_mapped) { pmap_kremove(pc->pc_kva, pc->pc_klen); pmap_update(pmap_kernel()); uvm_km_free(kernel_map, pc->pc_kva, pc->pc_klen, UVM_KMF_VAONLY); } /* * Free the cookie. */ kmem_free(pc, sizeof(*pc)); } /* * genio needs to zero pages past the EOF or without backing storage (think * sparse files). But since we are using physmaps, there is no kva to use with * memset so we need a helper to obtain a kva and memset the desired memory. */ void physmap_zero(physmap_t *map, size_t offset, size_t len) { void * const cookie = physmap_map_init(map, offset, VM_PROT_READ|VM_PROT_WRITE); for (;;) { vaddr_t kva; size_t seglen = physmap_map(cookie, &kva); KASSERT(seglen != 0); if (seglen > len) seglen = len; memset((void *)kva, 0, seglen); if (seglen == len) break; } physmap_map_fini(cookie); }