/* $NetBSD: kern_sleepq.c,v 1.87 2023/11/02 10:31:55 martin Exp $ */ /*- * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023 * The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Sleep queue implementation, used by turnstiles and general sleep/wakeup * interfaces. */ #include __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.87 2023/11/02 10:31:55 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include /* * for sleepq_abort: * During autoconfiguration or after a panic, a sleep will simply lower the * priority briefly to allow interrupts, then return. The priority to be * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and * maintained in the machine-dependent layers. This priority will typically * be 0, or the lowest priority that is safe for use on the interrupt stack; * it can be made higher to block network software interrupts after panics. */ #ifndef IPL_SAFEPRI #define IPL_SAFEPRI 0 #endif static int sleepq_sigtoerror(lwp_t *, int); /* General purpose sleep table, used by mtsleep() and condition variables. */ sleeptab_t sleeptab __cacheline_aligned; sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned; /* * sleeptab_init: * * Initialize a sleep table. */ void sleeptab_init(sleeptab_t *st) { static bool again; int i; for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) { if (!again) { mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT, IPL_SCHED); } sleepq_init(&st->st_queue[i]); } again = true; } /* * sleepq_init: * * Prepare a sleep queue for use. */ void sleepq_init(sleepq_t *sq) { LIST_INIT(sq); } /* * sleepq_remove: * * Remove an LWP from a sleep queue and wake it up. Distinguish * between deliberate wakeups (which are a valuable information) and * "unsleep" (an out-of-band action must be taken). * * For wakeup, convert any interruptable wait into non-interruptable * one before waking the LWP. Otherwise, if only one LWP is awoken it * could fail to do something useful with the wakeup due to an error * return and the caller of e.g. cv_signal() may not expect this. */ void sleepq_remove(sleepq_t *sq, lwp_t *l, bool wakeup) { struct schedstate_percpu *spc; struct cpu_info *ci; KASSERT(lwp_locked(l, NULL)); if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) { KASSERT(sq != NULL); LIST_REMOVE(l, l_sleepchain); } else { KASSERT(sq == NULL); } l->l_syncobj = &sched_syncobj; l->l_wchan = NULL; l->l_sleepq = NULL; l->l_flag &= wakeup ? ~(LW_SINTR|LW_CATCHINTR|LW_STIMO) : ~LW_SINTR; ci = l->l_cpu; spc = &ci->ci_schedstate; /* * If not sleeping, the LWP must have been suspended. Let whoever * holds it stopped set it running again. */ if (l->l_stat != LSSLEEP) { KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED); lwp_setlock(l, spc->spc_lwplock); return; } /* * If the LWP is still on the CPU, mark it as LSONPROC. It may be * about to call mi_switch(), in which case it will yield. */ if ((l->l_pflag & LP_RUNNING) != 0) { l->l_stat = LSONPROC; l->l_slptime = 0; lwp_setlock(l, spc->spc_lwplock); return; } /* Update sleep time delta, call the wake-up handler of scheduler */ l->l_slpticksum += (getticks() - l->l_slpticks); sched_wakeup(l); /* Look for a CPU to wake up */ l->l_cpu = sched_takecpu(l); ci = l->l_cpu; spc = &ci->ci_schedstate; /* * Set it running. */ spc_lock(ci); lwp_setlock(l, spc->spc_mutex); sched_setrunnable(l); l->l_stat = LSRUN; l->l_slptime = 0; sched_enqueue(l); sched_resched_lwp(l, true); /* LWP & SPC now unlocked, but we still hold sleep queue lock. */ } /* * sleepq_insert: * * Insert an LWP into the sleep queue, optionally sorting by priority. */ static void sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj) { if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) { KASSERT(sq == NULL); return; } KASSERT(sq != NULL); if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) { lwp_t *l2, *l_last = NULL; const pri_t pri = lwp_eprio(l); LIST_FOREACH(l2, sq, l_sleepchain) { l_last = l2; if (lwp_eprio(l2) < pri) { LIST_INSERT_BEFORE(l2, l, l_sleepchain); return; } } /* * Ensure FIFO ordering if no waiters are of lower priority. */ if (l_last != NULL) { LIST_INSERT_AFTER(l_last, l, l_sleepchain); return; } } LIST_INSERT_HEAD(sq, l, l_sleepchain); } /* * sleepq_enter: * * Prepare to block on a sleep queue, after which any interlock can be * safely released. */ int sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp) { int nlocks; KASSERT((sq != NULL) == (mp != NULL)); /* * Acquire the per-LWP mutex and lend it our sleep queue lock. * Once interlocked, we can release the kernel lock. */ lwp_lock(l); if (mp != NULL) { lwp_unlock_to(l, mp); } if (__predict_false((nlocks = l->l_blcnt) != 0)) { KERNEL_UNLOCK_ALL(NULL, NULL); } return nlocks; } /* * sleepq_enqueue: * * Enter an LWP into the sleep queue and prepare for sleep. The sleep * queue must already be locked, and any interlock (such as the kernel * lock) must have be released (see sleeptab_lookup(), sleepq_enter()). */ void sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj, bool catch_p) { lwp_t *l = curlwp; KASSERT(lwp_locked(l, NULL)); KASSERT(l->l_stat == LSONPROC); KASSERT(l->l_wchan == NULL); KASSERT(l->l_sleepq == NULL); KASSERT((l->l_flag & LW_SINTR) == 0); l->l_syncobj = sobj; l->l_wchan = wchan; l->l_sleepq = sq; l->l_wmesg = wmesg; l->l_slptime = 0; l->l_stat = LSSLEEP; if (catch_p) l->l_flag |= LW_SINTR; sleepq_insert(sq, l, sobj); /* Save the time when thread has slept */ l->l_slpticks = getticks(); sched_slept(l); } /* * sleepq_transfer: * * Move an LWP from one sleep queue to another. Both sleep queues * must already be locked. * * The LWP will be updated with the new sleepq, wchan, wmesg, * sobj, and mutex. The interruptible flag will also be updated. */ void sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p) { KASSERT(l->l_sleepq == from_sq); LIST_REMOVE(l, l_sleepchain); l->l_syncobj = sobj; l->l_wchan = wchan; l->l_sleepq = sq; l->l_wmesg = wmesg; if (catch_p) l->l_flag = LW_SINTR | LW_CATCHINTR; else l->l_flag = ~(LW_SINTR | LW_CATCHINTR); /* * This allows the transfer from one sleepq to another where * it is known that they're both protected by the same lock. */ if (mp != NULL) lwp_setlock(l, mp); sleepq_insert(sq, l, sobj); } /* * sleepq_uncatch: * * Mark the LWP as no longer sleeping interruptibly. */ void sleepq_uncatch(lwp_t *l) { l->l_flag &= ~(LW_SINTR | LW_CATCHINTR | LW_STIMO); } /* * sleepq_block: * * After any intermediate step such as releasing an interlock, switch. * sleepq_block() may return early under exceptional conditions, for * example if the LWP's containing process is exiting. * * timo is a timeout in ticks. timo = 0 specifies an infinite timeout. */ int sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks) { const int mask = LW_CANCELLED|LW_WEXIT|LW_WCORE|LW_PENDSIG; int error = 0, sig, flag; struct proc *p; lwp_t *l = curlwp; bool early = false; ktrcsw(1, 0, syncobj); /* * If sleeping interruptably, check for pending signals, exits or * core dump events. * * Note the usage of LW_CATCHINTR. This expresses our intent * to catch or not catch sleep interruptions, which might change * while we are sleeping. It is independent from LW_SINTR because * we don't want to leave LW_SINTR set when the LWP is not asleep. */ if (catch_p) { if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) { l->l_flag &= ~LW_CANCELLED; error = EINTR; early = true; } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) early = true; l->l_flag |= LW_CATCHINTR; } else l->l_flag &= ~LW_CATCHINTR; if (early) { /* lwp_unsleep() will release the lock */ lwp_unsleep(l, true); } else { /* * The LWP may have already been awoken if the caller * dropped the sleep queue lock between sleepq_enqueue() and * sleepq_block(). If that happens l_stat will be LSONPROC * and mi_switch() will treat this as a preemption. No need * to do anything special here. */ if (timo) { l->l_flag &= ~LW_STIMO; callout_schedule(&l->l_timeout_ch, timo); } l->l_boostpri = l->l_syncobj->sobj_boostpri; spc_lock(l->l_cpu); mi_switch(l); /* The LWP and sleep queue are now unlocked. */ if (timo) { /* * Even if the callout appears to have fired, we * need to stop it in order to synchronise with * other CPUs. It's important that we do this in * this LWP's context, and not during wakeup, in * order to keep the callout & its cache lines * co-located on the CPU with the LWP. */ (void)callout_halt(&l->l_timeout_ch, NULL); error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0; } } /* * LW_CATCHINTR is only modified in this function OR when we * are asleep (with the sleepq locked). We can therefore safely * test it unlocked here as it is guaranteed to be stable by * virtue of us running. * * We do not bother clearing it if set; that would require us * to take the LWP lock, and it doesn't seem worth the hassle * considering it is only meaningful here inside this function, * and is set to reflect intent upon entry. */ flag = atomic_load_relaxed(&l->l_flag); if (__predict_false((flag & mask) != 0)) { if ((flag & LW_CATCHINTR) == 0 || error != 0) /* nothing */; else if ((flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0) error = EINTR; else if ((flag & LW_PENDSIG) != 0) { /* * Acquiring p_lock may cause us to recurse * through the sleep path and back into this * routine, but is safe because LWPs sleeping * on locks are non-interruptable and we will * not recurse again. */ p = l->l_proc; mutex_enter(p->p_lock); if (((sig = sigispending(l, 0)) != 0 && (sigprop[sig] & SA_STOP) == 0) || (sig = issignal(l)) != 0) error = sleepq_sigtoerror(l, sig); mutex_exit(p->p_lock); } } ktrcsw(0, 0, syncobj); if (__predict_false(nlocks != 0)) { KERNEL_LOCK(nlocks, NULL); } return error; } /* * sleepq_wake: * * Wake zero or more LWPs blocked on a single wait channel. */ void sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp) { lwp_t *l, *next; KASSERT(mutex_owned(mp)); for (l = LIST_FIRST(sq); l != NULL; l = next) { KASSERT(l->l_sleepq == sq); KASSERT(l->l_mutex == mp); next = LIST_NEXT(l, l_sleepchain); if (l->l_wchan != wchan) continue; sleepq_remove(sq, l, true); if (--expected == 0) break; } mutex_spin_exit(mp); } /* * sleepq_unsleep: * * Remove an LWP from its sleep queue and set it runnable again. * sleepq_unsleep() is called with the LWP's mutex held, and will * release it if "unlock" is true. */ void sleepq_unsleep(lwp_t *l, bool unlock) { sleepq_t *sq = l->l_sleepq; kmutex_t *mp = l->l_mutex; KASSERT(lwp_locked(l, mp)); KASSERT(l->l_wchan != NULL); sleepq_remove(sq, l, false); if (unlock) { mutex_spin_exit(mp); } } /* * sleepq_timeout: * * Entered via the callout(9) subsystem to time out an LWP that is on a * sleep queue. */ void sleepq_timeout(void *arg) { lwp_t *l = arg; /* * Lock the LWP. Assuming it's still on the sleep queue, its * current mutex will also be the sleep queue mutex. */ lwp_lock(l); if (l->l_wchan == NULL || l->l_syncobj == &callout_syncobj) { /* * Somebody beat us to it, or the LWP is blocked in * callout_halt() waiting for us to finish here. In * neither case should the LWP produce EWOULDBLOCK. */ lwp_unlock(l); return; } l->l_flag |= LW_STIMO; lwp_unsleep(l, true); } /* * sleepq_sigtoerror: * * Given a signal number, interpret and return an error code. */ static int sleepq_sigtoerror(lwp_t *l, int sig) { struct proc *p = l->l_proc; int error; KASSERT(mutex_owned(p->p_lock)); /* * If this sleep was canceled, don't let the syscall restart. */ if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0) error = EINTR; else error = ERESTART; return error; } /* * sleepq_abort: * * After a panic or during autoconfiguration, lower the interrupt * priority level to give pending interrupts a chance to run, and * then return. Called if sleepq_dontsleep() returns non-zero, and * always returns zero. */ int sleepq_abort(kmutex_t *mtx, int unlock) { int s; s = splhigh(); splx(IPL_SAFEPRI); splx(s); if (mtx != NULL && unlock != 0) mutex_exit(mtx); return 0; } /* * sleepq_reinsert: * * Move the position of the lwp in the sleep queue after a possible * change of the lwp's effective priority. */ static void sleepq_reinsert(sleepq_t *sq, lwp_t *l) { KASSERT(l->l_sleepq == sq); if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) { return; } /* * Don't let the sleep queue become empty, even briefly. * cv_signal() and cv_broadcast() inspect it without the * sleep queue lock held and need to see a non-empty queue * head if there are waiters. */ if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) { return; } LIST_REMOVE(l, l_sleepchain); sleepq_insert(sq, l, l->l_syncobj); } /* * sleepq_changepri: * * Adjust the priority of an LWP residing on a sleepq. */ void sleepq_changepri(lwp_t *l, pri_t pri) { sleepq_t *sq = l->l_sleepq; KASSERT(lwp_locked(l, NULL)); l->l_priority = pri; sleepq_reinsert(sq, l); } /* * sleepq_changepri: * * Adjust the lended priority of an LWP residing on a sleepq. */ void sleepq_lendpri(lwp_t *l, pri_t pri) { sleepq_t *sq = l->l_sleepq; KASSERT(lwp_locked(l, NULL)); l->l_inheritedprio = pri; l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); sleepq_reinsert(sq, l); }