/* $NetBSD: usb_subr.c,v 1.278 2023/04/11 08:50:07 riastradh Exp $ */ /* $FreeBSD: src/sys/dev/usb/usb_subr.c,v 1.18 1999/11/17 22:33:47 n_hibma Exp $ */ /* * Copyright (c) 1998, 2004 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: usb_subr.c,v 1.278 2023/04/11 08:50:07 riastradh Exp $"); #ifdef _KERNEL_OPT #include "opt_compat_netbsd.h" #include "opt_usb.h" #include "opt_usbverbose.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "locators.h" #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usbdebug,FMT,A,B,C,D) #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbdebug,N,FMT,A,B,C,D) Static void usbd_devinfo(struct usbd_device *, int, char *, size_t); Static int usbd_getnewaddr(struct usbd_bus *); Static int usbd_print(void *, const char *); Static int usbd_ifprint(void *, const char *); Static void usbd_free_iface_data(struct usbd_device *, int); uint32_t usb_cookie_no = 0; Static const char * const usbd_error_strs[] = { "NORMAL_COMPLETION", "IN_PROGRESS", "PENDING_REQUESTS", "NOT_STARTED", "INVAL", "NOMEM", "CANCELLED", "BAD_ADDRESS", "IN_USE", "NO_ADDR", "SET_ADDR_FAILED", "NO_POWER", "TOO_DEEP", "IOERROR", "NOT_CONFIGURED", "TIMEOUT", "SHORT_XFER", "STALLED", "INTERRUPTED", "XXX", }; DEV_VERBOSE_DEFINE(usb); const char * usbd_errstr(usbd_status err) { static char buffer[5]; if (err < USBD_ERROR_MAX) { return usbd_error_strs[err]; } else { snprintf(buffer, sizeof(buffer), "%d", err); return buffer; } } static void usbd_trim_spaces(char *p) { char *q, *e; q = e = p; while (*q == ' ') /* skip leading spaces */ q++; while ((*p = *q++)) /* copy string */ if (*p++ != ' ') /* remember last non-space */ e = p; *e = '\0'; /* kill trailing spaces */ } static void usbd_get_device_string(struct usbd_device *ud, uByte index, char **buf) { char *b; usbd_status err; b = kmem_alloc(USB_MAX_ENCODED_STRING_LEN, KM_SLEEP); err = usbd_get_string0(ud, index, b, true); if (err != USBD_NORMAL_COMPLETION) { kmem_free(b, USB_MAX_ENCODED_STRING_LEN); b = NULL; } else { usbd_trim_spaces(b); } *buf = b; } void usbd_get_device_strings(struct usbd_device *ud) { usb_device_descriptor_t *udd = &ud->ud_ddesc; usbd_get_device_string(ud, udd->iManufacturer, &ud->ud_vendor); usbd_get_device_string(ud, udd->iProduct, &ud->ud_product); usbd_get_device_string(ud, udd->iSerialNumber, &ud->ud_serial); } void usbd_devinfo_vp(struct usbd_device *dev, char *v, size_t vl, char *p, size_t pl, int usedev, int useencoded) { usb_device_descriptor_t *udd = &dev->ud_ddesc; if (dev == NULL) return; v[0] = p[0] = '\0'; if (usedev) { if (usbd_get_string0(dev, udd->iManufacturer, v, useencoded) == USBD_NORMAL_COMPLETION) usbd_trim_spaces(v); if (usbd_get_string0(dev, udd->iProduct, p, useencoded) == USBD_NORMAL_COMPLETION) usbd_trim_spaces(p); } else { if (dev->ud_vendor) { strlcpy(v, dev->ud_vendor, vl); } if (dev->ud_product) { strlcpy(p, dev->ud_product, pl); } } if (v[0] == '\0') usb_findvendor(v, vl, UGETW(udd->idVendor)); if (p[0] == '\0') usb_findproduct(p, pl, UGETW(udd->idVendor), UGETW(udd->idProduct)); } int usbd_printBCD(char *cp, size_t l, int bcd) { return snprintf(cp, l, "%x.%02x", bcd >> 8, bcd & 0xff); } Static void usbd_devinfo(struct usbd_device *dev, int showclass, char *cp, size_t l) { usb_device_descriptor_t *udd = &dev->ud_ddesc; char *vendor, *product; int bcdDevice, bcdUSB; char *ep; vendor = kmem_alloc(USB_MAX_ENCODED_STRING_LEN * 2, KM_SLEEP); product = &vendor[USB_MAX_ENCODED_STRING_LEN]; ep = cp + l; usbd_devinfo_vp(dev, vendor, USB_MAX_ENCODED_STRING_LEN, product, USB_MAX_ENCODED_STRING_LEN, 0, 1); cp += snprintf(cp, ep - cp, "%s (0x%04x) %s (0x%04x)", vendor, UGETW(udd->idVendor), product, UGETW(udd->idProduct)); if (showclass) cp += snprintf(cp, ep - cp, ", class %d/%d", udd->bDeviceClass, udd->bDeviceSubClass); bcdUSB = UGETW(udd->bcdUSB); bcdDevice = UGETW(udd->bcdDevice); cp += snprintf(cp, ep - cp, ", rev "); cp += usbd_printBCD(cp, ep - cp, bcdUSB); *cp++ = '/'; cp += usbd_printBCD(cp, ep - cp, bcdDevice); cp += snprintf(cp, ep - cp, ", addr %d", dev->ud_addr); *cp = 0; kmem_free(vendor, USB_MAX_ENCODED_STRING_LEN * 2); } char * usbd_devinfo_alloc(struct usbd_device *dev, int showclass) { char *devinfop; devinfop = kmem_alloc(DEVINFOSIZE, KM_SLEEP); usbd_devinfo(dev, showclass, devinfop, DEVINFOSIZE); return devinfop; } void usbd_devinfo_free(char *devinfop) { kmem_free(devinfop, DEVINFOSIZE); } /* Delay for a certain number of ms */ void usb_delay_ms_locked(struct usbd_bus *bus, u_int ms, kmutex_t *lock) { /* Wait at least two clock ticks so we know the time has passed. */ if (bus->ub_usepolling || cold) delay((ms+1) * 1000); else kpause("usbdly", false, (ms*hz+999)/1000 + 1, lock); } void usb_delay_ms(struct usbd_bus *bus, u_int ms) { usb_delay_ms_locked(bus, ms, NULL); } /* Delay given a device handle. */ void usbd_delay_ms_locked(struct usbd_device *dev, u_int ms, kmutex_t *lock) { usb_delay_ms_locked(dev->ud_bus, ms, lock); } /* Delay given a device handle. */ void usbd_delay_ms(struct usbd_device *dev, u_int ms) { usb_delay_ms_locked(dev->ud_bus, ms, NULL); } usbd_status usbd_reset_port(struct usbd_device *dev, int port, usb_port_status_t *ps) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "port %jd", port, 0, 0, 0); usb_device_request_t req; usbd_status err; int n; req.bmRequestType = UT_WRITE_CLASS_OTHER; req.bRequest = UR_SET_FEATURE; USETW(req.wValue, UHF_PORT_RESET); USETW(req.wIndex, port); USETW(req.wLength, 0); err = usbd_do_request(dev, &req, 0); DPRINTFN(1, "port %jd reset done, error=%jd", port, err, 0, 0); if (err) return err; n = 10; do { /* Wait for device to recover from reset. */ usbd_delay_ms(dev, USB_PORT_RESET_DELAY); err = usbd_get_port_status(dev, port, ps); if (err) { DPRINTF("get status failed %jd", err, 0, 0, 0); return err; } /* If the device disappeared, just give up. */ if (!(UGETW(ps->wPortStatus) & UPS_CURRENT_CONNECT_STATUS)) return USBD_NORMAL_COMPLETION; } while ((UGETW(ps->wPortChange) & UPS_C_PORT_RESET) == 0 && --n > 0); if (n == 0) return USBD_TIMEOUT; err = usbd_clear_port_feature(dev, port, UHF_C_PORT_RESET); #ifdef USB_DEBUG if (err) DPRINTF("clear port feature failed %jd", err, 0, 0, 0); #endif /* Wait for the device to recover from reset. */ usbd_delay_ms(dev, USB_PORT_RESET_RECOVERY); return err; } usb_interface_descriptor_t * usbd_find_idesc(usb_config_descriptor_t *cd, int ifaceidx, int altidx) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "iface/alt idx %jd/%jd", ifaceidx, altidx, 0, 0); char *p = (char *)cd; char *end = p + UGETW(cd->wTotalLength); usb_descriptor_t *desc; usb_interface_descriptor_t *idesc; int curidx, lastidx, curaidx = 0; for (curidx = lastidx = -1; end - p >= sizeof(*desc);) { desc = (usb_descriptor_t *)p; DPRINTFN(4, "idx=%jd(%jd) altidx=%jd(%jd)", ifaceidx, curidx, altidx, curaidx); DPRINTFN(4, "len=%jd type=%jd", desc->bLength, desc->bDescriptorType, 0, 0); if (desc->bLength < USB_DESCRIPTOR_SIZE) break; if (desc->bLength > end - p) break; p += desc->bLength; if (desc->bDescriptorType != UDESC_INTERFACE) continue; if (desc->bLength < USB_INTERFACE_DESCRIPTOR_SIZE) break; idesc = (usb_interface_descriptor_t *)desc; if (idesc->bInterfaceNumber != lastidx) { lastidx = idesc->bInterfaceNumber; curidx++; curaidx = 0; } else { curaidx++; } if (ifaceidx == curidx && altidx == curaidx) return idesc; } return NULL; } usb_endpoint_descriptor_t * usbd_find_edesc(usb_config_descriptor_t *cd, int ifaceidx, int altidx, int endptidx) { char *p = (char *)cd; char *end = p + UGETW(cd->wTotalLength); usb_interface_descriptor_t *idesc; usb_endpoint_descriptor_t *edesc; usb_descriptor_t *desc; int curidx; idesc = usbd_find_idesc(cd, ifaceidx, altidx); if (idesc == NULL) return NULL; if (endptidx >= idesc->bNumEndpoints) /* quick exit */ return NULL; curidx = -1; for (p = (char *)idesc + idesc->bLength; end - p >= sizeof(*edesc);) { desc = (usb_descriptor_t *)p; if (desc->bLength < USB_DESCRIPTOR_SIZE) break; if (desc->bLength > end - p) break; p += desc->bLength; if (desc->bDescriptorType == UDESC_INTERFACE) break; if (desc->bDescriptorType != UDESC_ENDPOINT) continue; if (desc->bLength < USB_ENDPOINT_DESCRIPTOR_SIZE) break; edesc = (usb_endpoint_descriptor_t *)desc; curidx++; if (curidx == endptidx) return edesc; } return NULL; } static void usbd_iface_init(struct usbd_device *dev, int ifaceidx) { struct usbd_interface *ifc = &dev->ud_ifaces[ifaceidx]; memset(ifc, 0, sizeof(*ifc)); ifc->ui_dev = dev; ifc->ui_idesc = NULL; ifc->ui_index = 0; ifc->ui_altindex = 0; ifc->ui_endpoints = NULL; ifc->ui_busy = 0; } static void usbd_iface_fini(struct usbd_device *dev, int ifaceidx) { struct usbd_interface *ifc __diagused = &dev->ud_ifaces[ifaceidx]; KASSERT(ifc->ui_dev == dev); KASSERT(ifc->ui_idesc == NULL); KASSERT(ifc->ui_index == 0); KASSERT(ifc->ui_altindex == 0); KASSERT(ifc->ui_endpoints == NULL); KASSERTMSG(ifc->ui_busy == 0, "%"PRId64, ifc->ui_busy); } /* * usbd_iface_lock/locked/unlock, usbd_iface_piperef/pipeunref * * We lock the interface while we are setting it, and we acquire a * reference to the interface for each pipe opened on it. * * Setting the interface while pipes are open is forbidden, and * opening pipes while the interface is being set is forbidden. */ bool usbd_iface_locked(struct usbd_interface *iface) { bool locked; mutex_enter(iface->ui_dev->ud_bus->ub_lock); locked = (iface->ui_busy == -1); mutex_exit(iface->ui_dev->ud_bus->ub_lock); return locked; } static void usbd_iface_exlock(struct usbd_interface *iface) { mutex_enter(iface->ui_dev->ud_bus->ub_lock); KASSERTMSG(iface->ui_busy == 0, "interface is not idle," " busy=%"PRId64, iface->ui_busy); iface->ui_busy = -1; mutex_exit(iface->ui_dev->ud_bus->ub_lock); } usbd_status usbd_iface_lock(struct usbd_interface *iface) { usbd_status err; mutex_enter(iface->ui_dev->ud_bus->ub_lock); KASSERTMSG(iface->ui_busy != -1, "interface is locked"); KASSERTMSG(iface->ui_busy >= 0, "%"PRId64, iface->ui_busy); if (iface->ui_busy) { err = USBD_IN_USE; } else { iface->ui_busy = -1; err = 0; } mutex_exit(iface->ui_dev->ud_bus->ub_lock); return err; } void usbd_iface_unlock(struct usbd_interface *iface) { mutex_enter(iface->ui_dev->ud_bus->ub_lock); KASSERTMSG(iface->ui_busy == -1, "interface is not locked," " busy=%"PRId64, iface->ui_busy); iface->ui_busy = 0; mutex_exit(iface->ui_dev->ud_bus->ub_lock); } usbd_status usbd_iface_piperef(struct usbd_interface *iface) { usbd_status err; mutex_enter(iface->ui_dev->ud_bus->ub_lock); KASSERTMSG(iface->ui_busy >= -1, "%"PRId64, iface->ui_busy); if (iface->ui_busy == -1) { err = USBD_IN_USE; } else { iface->ui_busy++; err = 0; } mutex_exit(iface->ui_dev->ud_bus->ub_lock); return err; } void usbd_iface_pipeunref(struct usbd_interface *iface) { mutex_enter(iface->ui_dev->ud_bus->ub_lock); KASSERTMSG(iface->ui_busy != -1, "interface is locked"); KASSERTMSG(iface->ui_busy != 0, "interface not in use"); KASSERTMSG(iface->ui_busy >= 1, "%"PRId64, iface->ui_busy); iface->ui_busy--; mutex_exit(iface->ui_dev->ud_bus->ub_lock); } usbd_status usbd_fill_iface_data(struct usbd_device *dev, int ifaceidx, int altidx) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "ifaceidx=%jd altidx=%jd", ifaceidx, altidx, 0, 0); struct usbd_interface *ifc = &dev->ud_ifaces[ifaceidx]; usb_descriptor_t *desc; usb_interface_descriptor_t *idesc; usb_endpoint_descriptor_t *ed; struct usbd_endpoint *endpoints; char *p, *end; int endpt, nendpt; KASSERT(ifc->ui_dev == dev); KASSERT(usbd_iface_locked(ifc)); idesc = usbd_find_idesc(dev->ud_cdesc, ifaceidx, altidx); if (idesc == NULL) return USBD_INVAL; nendpt = idesc->bNumEndpoints; DPRINTFN(4, "found idesc nendpt=%jd", nendpt, 0, 0, 0); if (nendpt != 0) { endpoints = kmem_alloc(nendpt * sizeof(struct usbd_endpoint), KM_SLEEP); } else endpoints = NULL; p = (char *)idesc + idesc->bLength; end = (char *)dev->ud_cdesc + UGETW(dev->ud_cdesc->wTotalLength); KASSERTMSG((char *)dev->ud_cdesc <= (char *)idesc, "cdesc=%p idesc=%p", dev->ud_cdesc, idesc); KASSERTMSG((char *)idesc < end, "idesc=%p end=%p", idesc, end); for (endpt = 0; endpt < nendpt; endpt++) { DPRINTFN(10, "endpt=%jd", endpt, 0, 0, 0); for (; end - p >= sizeof(*desc); p += desc->bLength) { desc = (usb_descriptor_t *)p; DPRINTFN(10, "p=%#jx end=%#jx len=%jd type=%jd", (uintptr_t)p, (uintptr_t)end, desc->bLength, desc->bDescriptorType); if (desc->bLength < sizeof(*desc)) { printf("%s: bad descriptor: too short\n", __func__); goto bad; } else if (desc->bLength > end - p) { printf("%s: bad descriptor: too long\n", __func__); goto bad; } else if (desc->bDescriptorType == UDESC_INTERFACE) { printf("%s: bad descriptor: iface desc\n", __func__); goto bad; } if (desc->bLength >= USB_ENDPOINT_DESCRIPTOR_SIZE && desc->bDescriptorType == UDESC_ENDPOINT) { ed = (usb_endpoint_descriptor_t *)p; goto found; } } printf("%s: no desc found\n", __func__); goto bad; found: endpoints[endpt].ue_edesc = ed; if (dev->ud_speed == USB_SPEED_HIGH) { u_int mps; /* Control and bulk endpoints have max packet limits. */ switch (UE_GET_XFERTYPE(ed->bmAttributes)) { case UE_CONTROL: mps = USB_2_MAX_CTRL_PACKET; goto check; case UE_BULK: mps = USB_2_MAX_BULK_PACKET; check: if (UGETW(ed->wMaxPacketSize) != mps) { USETW(ed->wMaxPacketSize, mps); #ifdef DIAGNOSTIC printf("usbd_fill_iface_data: bad max " "packet size\n"); #endif } break; default: break; } } endpoints[endpt].ue_refcnt = 0; endpoints[endpt].ue_toggle = 0; KASSERTMSG(end - p >= ed->bLength, "p=%p end=%p length=%u", p, end, ed->bLength); p += ed->bLength; } #undef ed /* Success! Free the old endpoints and commit the changes. */ if (ifc->ui_endpoints) { kmem_free(ifc->ui_endpoints, (sizeof(ifc->ui_endpoints[0]) * ifc->ui_idesc->bNumEndpoints)); } ifc->ui_idesc = idesc; ifc->ui_index = ifaceidx; ifc->ui_altindex = altidx; ifc->ui_endpoints = endpoints; return USBD_NORMAL_COMPLETION; bad: if (endpoints) kmem_free(endpoints, nendpt * sizeof(struct usbd_endpoint)); return USBD_INVAL; } Static void usbd_free_iface_data(struct usbd_device *dev, int ifcno) { struct usbd_interface *ifc = &dev->ud_ifaces[ifcno]; KASSERT(ifc->ui_dev == dev); KASSERT(ifc->ui_idesc != NULL); KASSERT(usbd_iface_locked(ifc)); if (ifc->ui_endpoints) { int nendpt = ifc->ui_idesc->bNumEndpoints; size_t sz = nendpt * sizeof(struct usbd_endpoint); kmem_free(ifc->ui_endpoints, sz); ifc->ui_endpoints = NULL; } ifc->ui_altindex = 0; ifc->ui_index = 0; ifc->ui_idesc = NULL; } usbd_status usbd_set_config_no(struct usbd_device *dev, int no, int msg) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "%jd", no, 0, 0, 0); usb_config_descriptor_t cd; usbd_status err; int index; if (no == USB_UNCONFIG_NO) return usbd_set_config_index(dev, USB_UNCONFIG_INDEX, msg); /* Figure out what config index to use. */ for (index = 0; index < dev->ud_ddesc.bNumConfigurations; index++) { err = usbd_get_config_desc(dev, index, &cd); if (err) return err; if (cd.bConfigurationValue == no) return usbd_set_config_index(dev, index, msg); } return USBD_INVAL; } usbd_status usbd_set_config_index(struct usbd_device *dev, int index, int msg) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "dev=%#jx index=%jd", (uintptr_t)dev, index, 0, 0); usb_config_descriptor_t cd, *cdp; usb_bos_descriptor_t *bdp = NULL; usbd_status err; int i, ifcidx, nifc, len, selfpowered, power; if (index >= dev->ud_ddesc.bNumConfigurations && index != USB_UNCONFIG_INDEX) { /* panic? */ printf("usbd_set_config_index: illegal index\n"); return USBD_INVAL; } /* XXX check that all interfaces are idle */ if (dev->ud_config != USB_UNCONFIG_NO) { DPRINTF("free old config", 0, 0, 0, 0); /* Free all configuration data structures. */ nifc = dev->ud_cdesc->bNumInterface; for (ifcidx = 0; ifcidx < nifc; ifcidx++) { usbd_iface_exlock(&dev->ud_ifaces[ifcidx]); usbd_free_iface_data(dev, ifcidx); usbd_iface_unlock(&dev->ud_ifaces[ifcidx]); usbd_iface_fini(dev, ifcidx); } kmem_free(dev->ud_ifaces, nifc * sizeof(struct usbd_interface)); kmem_free(dev->ud_cdesc, UGETW(dev->ud_cdesc->wTotalLength)); if (dev->ud_bdesc != NULL) kmem_free(dev->ud_bdesc, UGETW(dev->ud_bdesc->wTotalLength)); dev->ud_ifaces = NULL; dev->ud_cdesc = NULL; dev->ud_bdesc = NULL; dev->ud_config = USB_UNCONFIG_NO; } if (index == USB_UNCONFIG_INDEX) { /* We are unconfiguring the device, so leave unallocated. */ DPRINTF("set config 0", 0, 0, 0, 0); err = usbd_set_config(dev, USB_UNCONFIG_NO); if (err) { DPRINTF("setting config=0 failed, err = %jd", err, 0, 0, 0); } return err; } /* Get the short descriptor. */ err = usbd_get_config_desc(dev, index, &cd); if (err) { DPRINTF("get_config_desc=%jd", err, 0, 0, 0); return err; } len = UGETW(cd.wTotalLength); if (len < USB_CONFIG_DESCRIPTOR_SIZE) { DPRINTF("empty short descriptor", 0, 0, 0, 0); return USBD_INVAL; } cdp = kmem_alloc(len, KM_SLEEP); /* Get the full descriptor. Try a few times for slow devices. */ for (i = 0; i < 3; i++) { err = usbd_get_desc(dev, UDESC_CONFIG, index, len, cdp); if (!err) break; usbd_delay_ms(dev, 200); } if (err) { DPRINTF("get_desc=%jd", err, 0, 0, 0); goto bad; } if (cdp->bDescriptorType != UDESC_CONFIG) { DPRINTF("bad desc %jd", cdp->bDescriptorType, 0, 0, 0); err = USBD_INVAL; goto bad; } if (UGETW(cdp->wTotalLength) != UGETW(cd.wTotalLength)) { DPRINTF("bad len %jd", UGETW(cdp->wTotalLength), 0, 0, 0); err = USBD_INVAL; goto bad; } if (USB_IS_SS(dev->ud_speed)) { usb_bos_descriptor_t bd; /* get short bos desc */ err = usbd_get_bos_desc(dev, index, &bd); if (!err) { int blen = UGETW(bd.wTotalLength); if (blen < USB_BOS_DESCRIPTOR_SIZE) { DPRINTF("empty bos descriptor", 0, 0, 0, 0); err = USBD_INVAL; goto bad; } bdp = kmem_alloc(blen, KM_SLEEP); /* Get the full desc */ for (i = 0; i < 3; i++) { err = usbd_get_desc(dev, UDESC_BOS, index, blen, bdp); if (!err) break; usbd_delay_ms(dev, 200); } if (err || bdp->bDescriptorType != UDESC_BOS || UGETW(bdp->wTotalLength) != UGETW(bd.wTotalLength)) { DPRINTF("error %jd or bad desc %jd", err, bdp->bDescriptorType, 0, 0); kmem_free(bdp, blen); bdp = NULL; } } } dev->ud_bdesc = bdp; /* * Figure out if the device is self or bus powered. */ #if 0 /* XXX various devices don't report the power state correctly */ selfpowered = 0; err = usbd_get_device_status(dev, &ds); if (!err && (UGETW(ds.wStatus) & UDS_SELF_POWERED)) selfpowered = 1; #endif /* * Use the power state in the configuration we are going * to set. This doesn't necessarily reflect the actual * power state of the device; the driver can control this * by choosing the appropriate configuration. */ selfpowered = !!(cdp->bmAttributes & UC_SELF_POWERED); DPRINTF("addr %jd cno=%jd attr=0x%02jx, selfpowered=%jd", dev->ud_addr, cdp->bConfigurationValue, cdp->bmAttributes, selfpowered); DPRINTF("max power=%jd", cdp->bMaxPower * 2, 0, 0, 0); /* Check if we have enough power. */ #if 0 /* this is a no-op, see above */ if ((cdp->bmAttributes & UC_SELF_POWERED) && !selfpowered) { if (msg) printf("%s: device addr %d (config %d): " "can't set self powered configuration\n", device_xname(dev->ud_bus->bdev), dev->ud_addr, cdp->bConfigurationValue); err = USBD_NO_POWER; goto bad; } #endif #ifdef USB_DEBUG if (dev->ud_powersrc == NULL) { DPRINTF("No power source?", 0, 0, 0, 0); err = USBD_IOERROR; goto bad; } #endif power = cdp->bMaxPower * 2; if (power > dev->ud_powersrc->up_power) { DPRINTF("power exceeded %jd %jd", power, dev->ud_powersrc->up_power, 0, 0); /* XXX print nicer message. */ if (msg) printf("%s: device addr %d (config %d) exceeds power " "budget, %d mA > %d mA\n", device_xname(dev->ud_bus->ub_usbctl), dev->ud_addr, cdp->bConfigurationValue, power, dev->ud_powersrc->up_power); err = USBD_NO_POWER; goto bad; } dev->ud_power = power; dev->ud_selfpowered = selfpowered; /* Set the actual configuration value. */ DPRINTF("set config %jd", cdp->bConfigurationValue, 0, 0, 0); err = usbd_set_config(dev, cdp->bConfigurationValue); if (err) { DPRINTF("setting config=%jd failed, error=%jd", cdp->bConfigurationValue, err, 0, 0); goto bad; } KASSERTMSG(dev->ud_ifaces == NULL, "ud_ifaces=%p", dev->ud_ifaces); /* Allocate and fill interface data. */ nifc = cdp->bNumInterface; if (nifc == 0) { DPRINTF("no interfaces", 0, 0, 0, 0); err = USBD_INVAL; goto bad; } dev->ud_ifaces = kmem_alloc(nifc * sizeof(struct usbd_interface), KM_SLEEP); DPRINTFN(5, "dev=%#jx cdesc=%#jx", (uintptr_t)dev, (uintptr_t)cdp, 0, 0); dev->ud_cdesc = cdp; dev->ud_config = cdp->bConfigurationValue; for (ifcidx = 0; ifcidx < nifc; ifcidx++) { usbd_iface_init(dev, ifcidx); usbd_iface_exlock(&dev->ud_ifaces[ifcidx]); err = usbd_fill_iface_data(dev, ifcidx, 0); usbd_iface_unlock(&dev->ud_ifaces[ifcidx]); if (err) { while (--ifcidx >= 0) { usbd_iface_exlock(&dev->ud_ifaces[ifcidx]); usbd_free_iface_data(dev, ifcidx); usbd_iface_unlock(&dev->ud_ifaces[ifcidx]); usbd_iface_fini(dev, ifcidx); } kmem_free(dev->ud_ifaces, nifc * sizeof(struct usbd_interface)); dev->ud_ifaces = NULL; goto bad; } } return USBD_NORMAL_COMPLETION; bad: /* XXX Use usbd_set_config() to reset the config? */ /* XXX Should we forbid USB_UNCONFIG_NO from bConfigurationValue? */ dev->ud_config = USB_UNCONFIG_NO; KASSERT(dev->ud_ifaces == NULL); kmem_free(cdp, len); dev->ud_cdesc = NULL; if (bdp != NULL) { kmem_free(bdp, UGETW(bdp->wTotalLength)); dev->ud_bdesc = NULL; } return err; } /* XXX add function for alternate settings */ usbd_status usbd_setup_pipe(struct usbd_device *dev, struct usbd_interface *iface, struct usbd_endpoint *ep, int ival, struct usbd_pipe **pipe) { return usbd_setup_pipe_flags(dev, iface, ep, ival, pipe, 0); } usbd_status usbd_setup_pipe_flags(struct usbd_device *dev, struct usbd_interface *iface, struct usbd_endpoint *ep, int ival, struct usbd_pipe **pipe, uint8_t flags) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "dev=%#jx addr=%jd iface=%#jx ep=%#jx", (uintptr_t)dev, dev->ud_addr, (uintptr_t)iface, (uintptr_t)ep); struct usbd_pipe *p = NULL; bool ep_acquired = false; usbd_status err; /* Block exclusive use of the endpoint by later pipes. */ err = usbd_endpoint_acquire(dev, ep, flags & USBD_EXCLUSIVE_USE); if (err) goto out; ep_acquired = true; p = kmem_alloc(dev->ud_bus->ub_pipesize, KM_SLEEP); DPRINTFN(1, "pipe=%#jx", (uintptr_t)p, 0, 0, 0); p->up_dev = dev; p->up_iface = iface; p->up_endpoint = ep; p->up_intrxfer = NULL; p->up_running = 0; p->up_aborting = 0; p->up_serialise = true; p->up_repeat = 0; p->up_interval = ival; p->up_flags = flags; SIMPLEQ_INIT(&p->up_queue); p->up_callingxfer = NULL; cv_init(&p->up_callingcv, "usbpipecb"); p->up_abortlwp = NULL; err = dev->ud_bus->ub_methods->ubm_open(p); if (err) { DPRINTF("endpoint=%#jx failed, error=%jd", (uintptr_t)ep->ue_edesc->bEndpointAddress, err, 0, 0); goto out; } KASSERT(p->up_methods->upm_start || p->up_serialise == false); usb_init_task(&p->up_async_task, usbd_clear_endpoint_stall_task, p, USB_TASKQ_MPSAFE); DPRINTFN(1, "pipe=%#jx", (uintptr_t)p, 0, 0, 0); *pipe = p; p = NULL; /* handed off to caller */ ep_acquired = false; /* handed off to pipe */ err = USBD_NORMAL_COMPLETION; out: if (p) { KASSERT(p->up_abortlwp == NULL); KASSERT(p->up_callingxfer == NULL); cv_destroy(&p->up_callingcv); kmem_free(p, dev->ud_bus->ub_pipesize); } if (ep_acquired) usbd_endpoint_release(dev, ep); return err; } usbd_status usbd_endpoint_acquire(struct usbd_device *dev, struct usbd_endpoint *ep, int flags) { usbd_status err; mutex_enter(dev->ud_bus->ub_lock); if (ep->ue_refcnt == INT_MAX) { err = USBD_IN_USE; /* XXX rule out or switch to 64-bit */ } else if ((flags & USBD_EXCLUSIVE_USE) && ep->ue_refcnt) { err = USBD_IN_USE; } else { ep->ue_refcnt++; err = 0; } mutex_exit(dev->ud_bus->ub_lock); return err; } void usbd_endpoint_release(struct usbd_device *dev, struct usbd_endpoint *ep) { mutex_enter(dev->ud_bus->ub_lock); KASSERT(ep->ue_refcnt); ep->ue_refcnt--; mutex_exit(dev->ud_bus->ub_lock); } /* Abort and close the device control pipe. */ void usbd_kill_pipe(struct usbd_pipe *pipe) { usbd_abort_pipe(pipe); usbd_close_pipe(pipe); } int usbd_getnewaddr(struct usbd_bus *bus) { int addr; for (addr = 1; addr < USB_MAX_DEVICES; addr++) { size_t dindex = usb_addr2dindex(addr); if (bus->ub_devices[dindex] == NULL) return addr; } return -1; } usbd_status usbd_attach_roothub(device_t parent, struct usbd_device *dev) { struct usb_attach_arg uaa; usb_device_descriptor_t *dd = &dev->ud_ddesc; device_t dv; uaa.uaa_device = dev; uaa.uaa_usegeneric = 0; uaa.uaa_port = 0; uaa.uaa_vendor = UGETW(dd->idVendor); uaa.uaa_product = UGETW(dd->idProduct); uaa.uaa_release = UGETW(dd->bcdDevice); uaa.uaa_class = dd->bDeviceClass; uaa.uaa_subclass = dd->bDeviceSubClass; uaa.uaa_proto = dd->bDeviceProtocol; KERNEL_LOCK(1, curlwp); dv = config_found(parent, &uaa, NULL, CFARGS(.iattr = "usbroothubif")); KERNEL_UNLOCK_ONE(curlwp); if (dv) { dev->ud_subdevs = kmem_alloc(sizeof(dv), KM_SLEEP); dev->ud_subdevs[0] = dv; dev->ud_subdevlen = 1; } return USBD_NORMAL_COMPLETION; } static void usbd_properties(device_t dv, struct usbd_device *dev) { usb_device_descriptor_t *dd = &dev->ud_ddesc; prop_dictionary_t dict = device_properties(dv); int class, subclass, release, proto, vendor, product; class = dd->bDeviceClass; subclass = dd->bDeviceSubClass; release = UGETW(dd->bcdDevice); proto = dd->bDeviceProtocol; vendor = UGETW(dd->idVendor); product = UGETW(dd->idProduct); prop_dictionary_set_uint8(dict, "class", class); prop_dictionary_set_uint8(dict, "subclass", subclass); prop_dictionary_set_uint16(dict, "release", release); prop_dictionary_set_uint8(dict, "proto", proto); prop_dictionary_set_uint16(dict, "vendor-id", vendor); prop_dictionary_set_uint16(dict, "product-id", product); if (dev->ud_vendor) { prop_dictionary_set_string(dict, "vendor-string", dev->ud_vendor); } if (dev->ud_product) { prop_dictionary_set_string(dict, "product-string", dev->ud_product); } if (dev->ud_serial) { prop_dictionary_set_string(dict, "serialnumber", dev->ud_serial); } } static usbd_status usbd_attachwholedevice(device_t parent, struct usbd_device *dev, int port, int usegeneric) { struct usb_attach_arg uaa; usb_device_descriptor_t *dd = &dev->ud_ddesc; device_t dv; int dlocs[USBDEVIFCF_NLOCS]; KASSERT(usb_in_event_thread(parent)); uaa.uaa_device = dev; uaa.uaa_usegeneric = usegeneric; uaa.uaa_port = port; uaa.uaa_vendor = UGETW(dd->idVendor); uaa.uaa_product = UGETW(dd->idProduct); uaa.uaa_release = UGETW(dd->bcdDevice); uaa.uaa_class = dd->bDeviceClass; uaa.uaa_subclass = dd->bDeviceSubClass; uaa.uaa_proto = dd->bDeviceProtocol; dlocs[USBDEVIFCF_PORT] = uaa.uaa_port; dlocs[USBDEVIFCF_VENDOR] = uaa.uaa_vendor; dlocs[USBDEVIFCF_PRODUCT] = uaa.uaa_product; dlocs[USBDEVIFCF_RELEASE] = uaa.uaa_release; /* the rest is historical ballast */ dlocs[USBDEVIFCF_CONFIGURATION] = -1; dlocs[USBDEVIFCF_INTERFACE] = -1; config_pending_incr(parent); KERNEL_LOCK(1, curlwp); dv = config_found(parent, &uaa, usbd_print, CFARGS(.submatch = config_stdsubmatch, .iattr = "usbdevif", .locators = dlocs)); KERNEL_UNLOCK_ONE(curlwp); if (dv) { dev->ud_subdevs = kmem_alloc(sizeof(dv), KM_SLEEP); dev->ud_subdevs[0] = dv; dev->ud_subdevlen = 1; dev->ud_nifaces_claimed = 1; /* XXX */ usbd_properties(dv, dev); } config_pending_decr(parent); return USBD_NORMAL_COMPLETION; } static usbd_status usbd_attachinterfaces(device_t parent, struct usbd_device *dev, int port, const int *locators) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); struct usbif_attach_arg uiaa; int ilocs[USBIFIFCF_NLOCS]; usb_device_descriptor_t *dd = &dev->ud_ddesc; int nifaces; struct usbd_interface **ifaces; int i, j, loc; device_t dv; KASSERT(usb_in_event_thread(parent)); nifaces = dev->ud_cdesc->bNumInterface; ifaces = kmem_zalloc(nifaces * sizeof(*ifaces), KM_SLEEP); for (i = 0; i < nifaces; i++) { if (!dev->ud_subdevs[i]) { ifaces[i] = &dev->ud_ifaces[i]; } DPRINTF("interface %jd %#jx", i, (uintptr_t)ifaces[i], 0, 0); } uiaa.uiaa_device = dev; uiaa.uiaa_port = port; uiaa.uiaa_vendor = UGETW(dd->idVendor); uiaa.uiaa_product = UGETW(dd->idProduct); uiaa.uiaa_release = UGETW(dd->bcdDevice); uiaa.uiaa_configno = dev->ud_cdesc->bConfigurationValue; uiaa.uiaa_ifaces = ifaces; uiaa.uiaa_nifaces = nifaces; ilocs[USBIFIFCF_PORT] = uiaa.uiaa_port; ilocs[USBIFIFCF_VENDOR] = uiaa.uiaa_vendor; ilocs[USBIFIFCF_PRODUCT] = uiaa.uiaa_product; ilocs[USBIFIFCF_RELEASE] = uiaa.uiaa_release; ilocs[USBIFIFCF_CONFIGURATION] = uiaa.uiaa_configno; for (i = 0; i < nifaces; i++) { if (!ifaces[i]) { DPRINTF("interface %jd claimed", i, 0, 0, 0); continue; /* interface already claimed */ } uiaa.uiaa_iface = ifaces[i]; uiaa.uiaa_class = ifaces[i]->ui_idesc->bInterfaceClass; uiaa.uiaa_subclass = ifaces[i]->ui_idesc->bInterfaceSubClass; uiaa.uiaa_proto = ifaces[i]->ui_idesc->bInterfaceProtocol; uiaa.uiaa_ifaceno = ifaces[i]->ui_idesc->bInterfaceNumber; DPRINTF("searching for interface %jd...", i, 0, 0, 0); DPRINTF("class %jx subclass %jx proto %jx ifaceno %jd", uiaa.uiaa_class, uiaa.uiaa_subclass, uiaa.uiaa_proto, uiaa.uiaa_ifaceno); ilocs[USBIFIFCF_INTERFACE] = uiaa.uiaa_ifaceno; if (locators != NULL) { loc = locators[USBIFIFCF_CONFIGURATION]; if (loc != USBIFIFCF_CONFIGURATION_DEFAULT && loc != uiaa.uiaa_configno) continue; loc = locators[USBIFIFCF_INTERFACE]; if (loc != USBIFIFCF_INTERFACE_DEFAULT && loc != uiaa.uiaa_ifaceno) continue; } KERNEL_LOCK(1, curlwp); dv = config_found(parent, &uiaa, usbd_ifprint, CFARGS(.submatch = config_stdsubmatch, .iattr = "usbifif", .locators = ilocs)); KERNEL_UNLOCK_ONE(curlwp); if (!dv) continue; usbd_properties(dv, dev); /* claim */ ifaces[i] = NULL; /* account for ifaces claimed by the driver behind our back */ for (j = 0; j < nifaces; j++) { if (!ifaces[j] && !dev->ud_subdevs[j]) { DPRINTF("interface %jd claimed behind our back", j, 0, 0, 0); dev->ud_subdevs[j] = dv; dev->ud_nifaces_claimed++; } } } kmem_free(ifaces, nifaces * sizeof(*ifaces)); return USBD_NORMAL_COMPLETION; } usbd_status usbd_probe_and_attach(device_t parent, struct usbd_device *dev, int port, int addr) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "trying device specific drivers", 0, 0, 0, 0); usb_device_descriptor_t *dd = &dev->ud_ddesc; int confi, nifaces; usbd_status err; KASSERT(usb_in_event_thread(parent)); /* First try with device specific drivers. */ err = usbd_attachwholedevice(parent, dev, port, 0); if (dev->ud_nifaces_claimed || err) return err; DPRINTF("no device specific driver found", 0, 0, 0, 0); DPRINTF("looping over %jd configurations", dd->bNumConfigurations, 0, 0, 0); for (confi = 0; confi < dd->bNumConfigurations; confi++) { DPRINTFN(1, "trying config idx=%jd", confi, 0, 0, 0); err = usbd_set_config_index(dev, confi, 1); if (err) { DPRINTF("port %jd, set config at addr %jd failed, " "error=%jd", port, addr, err, 0); printf("%s: port %d, set config at addr %d failed\n", device_xname(parent), port, addr); return err; } nifaces = dev->ud_cdesc->bNumInterface; dev->ud_subdevs = kmem_zalloc(nifaces * sizeof(device_t), KM_SLEEP); dev->ud_subdevlen = nifaces; err = usbd_attachinterfaces(parent, dev, port, NULL); if (dev->ud_subdevs && dev->ud_nifaces_claimed == 0) { kmem_free(dev->ud_subdevs, dev->ud_subdevlen * sizeof(device_t)); dev->ud_subdevs = 0; dev->ud_subdevlen = 0; } if (dev->ud_nifaces_claimed || err) return err; } /* No interfaces were attached in any of the configurations. */ if (dd->bNumConfigurations > 1) /* don't change if only 1 config */ usbd_set_config_index(dev, 0, 0); DPRINTF("no interface drivers found", 0, 0, 0, 0); /* Finally try the generic driver. */ err = usbd_attachwholedevice(parent, dev, port, 1); /* * The generic attach failed, but leave the device as it is. * We just did not find any drivers, that's all. The device is * fully operational and not harming anyone. */ DPRINTF("generic attach failed", 0, 0, 0, 0); return USBD_NORMAL_COMPLETION; } /** * Called from uhub_rescan(). usbd_new_device() for the target dev must be * called before calling this. */ usbd_status usbd_reattach_device(device_t parent, struct usbd_device *dev, int port, const int *locators) { int i, loc; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "uhub%jd port=%jd", device_unit(parent), port, 0, 0); KASSERT(usb_in_event_thread(parent)); if (locators != NULL) { loc = locators[USBIFIFCF_PORT]; if (loc != USBIFIFCF_PORT_DEFAULT && loc != port) return USBD_NORMAL_COMPLETION; loc = locators[USBIFIFCF_VENDOR]; if (loc != USBIFIFCF_VENDOR_DEFAULT && loc != UGETW(dev->ud_ddesc.idVendor)) return USBD_NORMAL_COMPLETION; loc = locators[USBIFIFCF_PRODUCT]; if (loc != USBIFIFCF_PRODUCT_DEFAULT && loc != UGETW(dev->ud_ddesc.idProduct)) return USBD_NORMAL_COMPLETION; loc = locators[USBIFIFCF_RELEASE]; if (loc != USBIFIFCF_RELEASE_DEFAULT && loc != UGETW(dev->ud_ddesc.bcdDevice)) return USBD_NORMAL_COMPLETION; } if (dev->ud_subdevlen == 0) { /* XXX: check USBIFIFCF_CONFIGURATION and * USBIFIFCF_INTERFACE too */ return usbd_probe_and_attach(parent, dev, port, dev->ud_addr); } else if (dev->ud_subdevlen != dev->ud_cdesc->bNumInterface) { /* device-specific or generic driver is already attached. */ return USBD_NORMAL_COMPLETION; } /* Does the device have unconfigured interfaces? */ for (i = 0; i < dev->ud_subdevlen; i++) { if (dev->ud_subdevs[i] == NULL) { break; } } if (i >= dev->ud_subdevlen) return USBD_NORMAL_COMPLETION; return usbd_attachinterfaces(parent, dev, port, locators); } /* * Called when a new device has been put in the powered state, * but not yet in the addressed state. * Get initial descriptor, set the address, get full descriptor, * and attach a driver. */ usbd_status usbd_new_device(device_t parent, struct usbd_bus *bus, int depth, int speed, int port, struct usbd_port *up) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "bus=%#jx port=%jd depth=%jd speed=%jd", (uintptr_t)bus, port, depth, speed); struct usbd_device *dev, *adev; struct usbd_device *hub; usb_device_descriptor_t *dd; usb_port_status_t ps; usbd_status err; int addr; int i; int p; KASSERT(usb_in_event_thread(parent)); if (bus->ub_methods->ubm_newdev != NULL) return (bus->ub_methods->ubm_newdev)(parent, bus, depth, speed, port, up); addr = usbd_getnewaddr(bus); if (addr < 0) { printf("%s: No free USB addresses, new device ignored.\n", device_xname(bus->ub_usbctl)); return USBD_NO_ADDR; } dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); dev->ud_bus = bus; /* Set up default endpoint handle. */ dev->ud_ep0.ue_edesc = &dev->ud_ep0desc; /* Set up default endpoint descriptor. */ dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE; dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT; dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT; dev->ud_ep0desc.bmAttributes = UE_CONTROL; /* * temporary, will be fixed after first descriptor fetch * (which uses 64 bytes so it shouldn't be less), * highspeed devices must support 64 byte packets anyway */ if (speed == USB_SPEED_HIGH || speed == USB_SPEED_FULL) USETW(dev->ud_ep0desc.wMaxPacketSize, 64); else USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET); dev->ud_ep0desc.bInterval = 0; /* doesn't matter, just don't leave it uninitialized */ dev->ud_ep0.ue_toggle = 0; dev->ud_quirks = &usbd_no_quirk; dev->ud_addr = USB_START_ADDR; dev->ud_ddesc.bMaxPacketSize = 0; dev->ud_depth = depth; dev->ud_powersrc = up; dev->ud_myhub = up->up_parent; up->up_dev = dev; /* Locate port on upstream high speed hub */ for (adev = dev, hub = up->up_parent; hub != NULL && hub->ud_speed != USB_SPEED_HIGH; adev = hub, hub = hub->ud_myhub) ; if (hub) { for (p = 1; p <= hub->ud_hub->uh_hubdesc.bNbrPorts; p++) { if (hub->ud_hub->uh_ports[p - 1].up_dev == adev) { dev->ud_myhsport = &hub->ud_hub->uh_ports[p - 1]; goto found; } } panic("usbd_new_device: cannot find HS port"); found: DPRINTFN(1, "high speed port %jd", p, 0, 0, 0); } else { dev->ud_myhsport = NULL; } dev->ud_speed = speed; dev->ud_langid = USBD_NOLANG; dev->ud_cookie.cookie = ++usb_cookie_no; /* Establish the default pipe. */ err = usbd_setup_pipe_flags(dev, 0, &dev->ud_ep0, USBD_DEFAULT_INTERVAL, &dev->ud_pipe0, USBD_MPSAFE); if (err) { usbd_remove_device(dev, up); return err; } dd = &dev->ud_ddesc; /* Try a few times in case the device is slow (i.e. outside specs.) */ for (i = 0; i < 10; i++) { /* Get the first 8 bytes of the device descriptor. */ err = usbd_get_initial_ddesc(dev, dd); if (!err) break; /* * The root hub can never fail to give the initial descriptor, * but assert it just in case. */ KASSERT(up->up_parent); usbd_delay_ms(dev, 200); if ((i & 3) == 3) usbd_reset_port(up->up_parent, port, &ps); } if (err) { DPRINTF("addr=%jd, getting first desc failed: %jd", addr, err, 0, 0); usbd_remove_device(dev, up); return err; } /* Windows resets the port here, do likewise */ if (up->up_parent) usbd_reset_port(up->up_parent, port, &ps); if (speed == USB_SPEED_HIGH) { /* Max packet size must be 64 (sec 5.5.3). */ if (dd->bMaxPacketSize != USB_2_MAX_CTRL_PACKET) { #ifdef DIAGNOSTIC printf("usbd_new_device: addr=%d bad max packet " "size=%d. adjusting to %d.\n", addr, dd->bMaxPacketSize, USB_2_MAX_CTRL_PACKET); #endif dd->bMaxPacketSize = USB_2_MAX_CTRL_PACKET; } } DPRINTF("adding unit addr=%jd, rev=%02jx, class=%jd, subclass=%jd", addr, UGETW(dd->bcdUSB), dd->bDeviceClass, dd->bDeviceSubClass); DPRINTF("protocol=%jd, maxpacket=%jd, len=%jd, speed=%jd", dd->bDeviceProtocol, dd->bMaxPacketSize, dd->bLength, dev->ud_speed); if (dd->bDescriptorType != UDESC_DEVICE) { /* Illegal device descriptor */ DPRINTF("illegal descriptor %jd", dd->bDescriptorType, 0, 0, 0); usbd_remove_device(dev, up); return USBD_INVAL; } if (dd->bLength < USB_DEVICE_DESCRIPTOR_SIZE) { DPRINTF("bad length %jd", dd->bLength, 0, 0, 0); usbd_remove_device(dev, up); return USBD_INVAL; } USETW(dev->ud_ep0desc.wMaxPacketSize, dd->bMaxPacketSize); /* Re-establish the default pipe with the new MPS. */ usbd_kill_pipe(dev->ud_pipe0); dev->ud_pipe0 = NULL; err = usbd_setup_pipe_flags(dev, 0, &dev->ud_ep0, USBD_DEFAULT_INTERVAL, &dev->ud_pipe0, USBD_MPSAFE); if (err) { DPRINTF("setup default pipe failed err %jd", err, 0, 0, 0); usbd_remove_device(dev, up); return err; } /* Set the address */ DPRINTFN(5, "setting device address=%jd", addr, 0, 0, 0); err = usbd_set_address(dev, addr); if (err) { DPRINTF("set address %jd failed, err = %jd", addr, err, 0, 0); err = USBD_SET_ADDR_FAILED; usbd_remove_device(dev, up); return err; } /* Allow device time to set new address */ usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE); dev->ud_addr = addr; /* new device address now */ bus->ub_devices[usb_addr2dindex(addr)] = dev; /* Re-establish the default pipe with the new address. */ usbd_kill_pipe(dev->ud_pipe0); dev->ud_pipe0 = NULL; err = usbd_setup_pipe_flags(dev, 0, &dev->ud_ep0, USBD_DEFAULT_INTERVAL, &dev->ud_pipe0, USBD_MPSAFE); if (err) { DPRINTF("setup default pipe failed, err = %jd", err, 0, 0, 0); usbd_remove_device(dev, up); return err; } err = usbd_reload_device_desc(dev); if (err) { DPRINTF("addr=%jd, getting full desc failed, err = %jd", addr, err, 0, 0); usbd_remove_device(dev, up); return err; } /* Assume 100mA bus powered for now. Changed when configured. */ dev->ud_power = USB_MIN_POWER; dev->ud_selfpowered = 0; DPRINTF("new dev (addr %jd), dev=%#jx, parent=%#jx", addr, (uintptr_t)dev, (uintptr_t)parent, 0); usbd_get_device_strings(dev); usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev); if (port == 0) { /* root hub */ KASSERT(addr == 1); usbd_attach_roothub(parent, dev); return USBD_NORMAL_COMPLETION; } err = usbd_probe_and_attach(parent, dev, port, addr); if (err) { usbd_remove_device(dev, up); return err; } return USBD_NORMAL_COMPLETION; } usbd_status usbd_reload_device_desc(struct usbd_device *dev) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); usb_device_descriptor_t *udd = &dev->ud_ddesc; usbd_status err; /* Get the full device descriptor. */ err = usbd_get_device_desc(dev, udd); if (err) return err; if (udd->bDescriptorType != UDESC_DEVICE) return USBD_INVAL; if (udd->bLength < USB_DEVICE_DESCRIPTOR_SIZE) return USBD_INVAL; DPRINTFN(15, "bLength %5ju", udd->bLength, 0, 0, 0); DPRINTFN(15, "bDescriptorType %5ju", udd->bDescriptorType, 0, 0, 0); DPRINTFN(15, "bcdUSB %2jx.%02jx", udd->bcdUSB[1], udd->bcdUSB[0], 0, 0); DPRINTFN(15, "bDeviceClass %5ju", udd->bDeviceClass, 0, 0, 0); DPRINTFN(15, "bDeviceSubClass %5ju", udd->bDeviceSubClass, 0, 0, 0); DPRINTFN(15, "bDeviceProtocol %5ju", udd->bDeviceProtocol, 0, 0, 0); DPRINTFN(15, "bMaxPacketSize0 %5ju", udd->bMaxPacketSize, 0, 0, 0); DPRINTFN(15, "idVendor 0x%02jx 0x%02jx", udd->idVendor[0], udd->idVendor[1], 0, 0); DPRINTFN(15, "idProduct 0x%02jx 0x%02jx", udd->idProduct[0], udd->idProduct[1], 0, 0); DPRINTFN(15, "bcdDevice %2jx.%02jx", udd->bcdDevice[1], udd->bcdDevice[0], 0, 0); DPRINTFN(15, "iManufacturer %5ju", udd->iManufacturer, 0, 0, 0); DPRINTFN(15, "iProduct %5ju", udd->iProduct, 0, 0, 0); DPRINTFN(15, "iSerial %5ju", udd->iSerialNumber, 0, 0, 0); DPRINTFN(15, "bNumConfigurations %5ju", udd->bNumConfigurations, 0, 0, 0); /* Figure out what's wrong with this device. */ dev->ud_quirks = usbd_find_quirk(udd); return USBD_NORMAL_COMPLETION; } void usbd_remove_device(struct usbd_device *dev, struct usbd_port *up) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "dev %#jx up %#jx", (uintptr_t)dev, (uintptr_t)up, 0, 0); if (dev->ud_pipe0 != NULL) usbd_kill_pipe(dev->ud_pipe0); up->up_dev = NULL; dev->ud_bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = NULL; if (dev->ud_vendor != NULL) { kmem_free(dev->ud_vendor, USB_MAX_ENCODED_STRING_LEN); } if (dev->ud_product != NULL) { kmem_free(dev->ud_product, USB_MAX_ENCODED_STRING_LEN); } if (dev->ud_serial != NULL) { kmem_free(dev->ud_serial, USB_MAX_ENCODED_STRING_LEN); } kmem_free(dev, sizeof(*dev)); } int usbd_print(void *aux, const char *pnp) { struct usb_attach_arg *uaa = aux; if (pnp) { #define USB_DEVINFO 1024 char *devinfo; if (!uaa->uaa_usegeneric) return QUIET; devinfo = kmem_alloc(USB_DEVINFO, KM_SLEEP); usbd_devinfo(uaa->uaa_device, 1, devinfo, USB_DEVINFO); aprint_normal("%s, %s", devinfo, pnp); kmem_free(devinfo, USB_DEVINFO); } aprint_normal(" port %d", uaa->uaa_port); #if 0 /* * It gets very crowded with these locators on the attach line. * They are not really needed since they are printed in the clear * by each driver. */ if (uaa->uaa_vendor != UHUB_UNK_VENDOR) aprint_normal(" vendor 0x%04x", uaa->uaa_vendor); if (uaa->uaa_product != UHUB_UNK_PRODUCT) aprint_normal(" product 0x%04x", uaa->uaa_product); if (uaa->uaa_release != UHUB_UNK_RELEASE) aprint_normal(" release 0x%04x", uaa->uaa_release); #endif return UNCONF; } int usbd_ifprint(void *aux, const char *pnp) { struct usbif_attach_arg *uiaa = aux; if (pnp) return QUIET; aprint_normal(" port %d", uiaa->uiaa_port); aprint_normal(" configuration %d", uiaa->uiaa_configno); aprint_normal(" interface %d", uiaa->uiaa_ifaceno); #if 0 /* * It gets very crowded with these locators on the attach line. * They are not really needed since they are printed in the clear * by each driver. */ if (uaa->uaa_vendor != UHUB_UNK_VENDOR) aprint_normal(" vendor 0x%04x", uaa->uaa_vendor); if (uaa->uaa_product != UHUB_UNK_PRODUCT) aprint_normal(" product 0x%04x", uaa->uaa_product); if (uaa->uaa_release != UHUB_UNK_RELEASE) aprint_normal(" release 0x%04x", uaa->uaa_release); #endif return UNCONF; } void usbd_fill_deviceinfo(struct usbd_device *dev, struct usb_device_info *di, int usedev) { struct usbd_port *p; int i, j, err; di->udi_bus = device_unit(dev->ud_bus->ub_usbctl); di->udi_addr = dev->ud_addr; di->udi_cookie = dev->ud_cookie; usbd_devinfo_vp(dev, di->udi_vendor, sizeof(di->udi_vendor), di->udi_product, sizeof(di->udi_product), usedev, 1); usbd_printBCD(di->udi_release, sizeof(di->udi_release), UGETW(dev->ud_ddesc.bcdDevice)); if (usedev) { usbd_status uerr = usbd_get_string(dev, dev->ud_ddesc.iSerialNumber, di->udi_serial); if (uerr != USBD_NORMAL_COMPLETION) { di->udi_serial[0] = '\0'; } else { usbd_trim_spaces(di->udi_serial); } } else { di->udi_serial[0] = '\0'; if (dev->ud_serial) { strlcpy(di->udi_serial, dev->ud_serial, sizeof(di->udi_serial)); } } di->udi_vendorNo = UGETW(dev->ud_ddesc.idVendor); di->udi_productNo = UGETW(dev->ud_ddesc.idProduct); di->udi_releaseNo = UGETW(dev->ud_ddesc.bcdDevice); di->udi_class = dev->ud_ddesc.bDeviceClass; di->udi_subclass = dev->ud_ddesc.bDeviceSubClass; di->udi_protocol = dev->ud_ddesc.bDeviceProtocol; di->udi_config = dev->ud_config; di->udi_power = dev->ud_selfpowered ? 0 : dev->ud_power; di->udi_speed = dev->ud_speed; if (dev->ud_subdevlen > 0) { for (i = 0, j = 0; i < dev->ud_subdevlen && j < USB_MAX_DEVNAMES; i++) { if (!dev->ud_subdevs[i]) continue; strncpy(di->udi_devnames[j], device_xname(dev->ud_subdevs[i]), USB_MAX_DEVNAMELEN); di->udi_devnames[j][USB_MAX_DEVNAMELEN-1] = '\0'; j++; } } else { j = 0; } for (/* j is set */; j < USB_MAX_DEVNAMES; j++) di->udi_devnames[j][0] = 0; /* empty */ if (!dev->ud_hub) { di->udi_nports = 0; return; } const int nports = dev->ud_hub->uh_hubdesc.bNbrPorts; for (i = 1; i <= __arraycount(di->udi_ports) && i <= nports; i++) { p = &dev->ud_hub->uh_ports[i - 1]; if (p->up_dev) err = p->up_dev->ud_addr; else { const int s = UGETW(p->up_status.wPortStatus); const bool sshub_p = USB_IS_SS(dev->ud_speed); if (s & UPS_PORT_ENABLED) err = USB_PORT_ENABLED; else if (s & UPS_SUSPEND) err = USB_PORT_SUSPENDED; /* * Note: UPS_PORT_POWER_SS is available only * on 3.x, and UPS_PORT_POWER is available * only on 2.0 or 1.1. */ else if (sshub_p && (s & UPS_PORT_POWER_SS)) err = USB_PORT_POWERED; else if (!sshub_p && (s & UPS_PORT_POWER)) err = USB_PORT_POWERED; else err = USB_PORT_DISABLED; } di->udi_ports[i - 1] = err; } di->udi_nports = nports; } void usb_free_device(struct usbd_device *dev) { int ifcidx, nifc; if (dev->ud_pipe0 != NULL) usbd_kill_pipe(dev->ud_pipe0); if (dev->ud_ifaces != NULL) { nifc = dev->ud_cdesc->bNumInterface; for (ifcidx = 0; ifcidx < nifc; ifcidx++) { usbd_iface_exlock(&dev->ud_ifaces[ifcidx]); usbd_free_iface_data(dev, ifcidx); usbd_iface_unlock(&dev->ud_ifaces[ifcidx]); usbd_iface_fini(dev, ifcidx); } kmem_free(dev->ud_ifaces, nifc * sizeof(struct usbd_interface)); } if (dev->ud_cdesc != NULL) kmem_free(dev->ud_cdesc, UGETW(dev->ud_cdesc->wTotalLength)); if (dev->ud_bdesc != NULL) kmem_free(dev->ud_bdesc, UGETW(dev->ud_bdesc->wTotalLength)); if (dev->ud_subdevlen > 0) { kmem_free(dev->ud_subdevs, dev->ud_subdevlen * sizeof(device_t)); dev->ud_subdevlen = 0; } if (dev->ud_vendor) { kmem_free(dev->ud_vendor, USB_MAX_ENCODED_STRING_LEN); } if (dev->ud_product) { kmem_free(dev->ud_product, USB_MAX_ENCODED_STRING_LEN); } if (dev->ud_serial) { kmem_free(dev->ud_serial, USB_MAX_ENCODED_STRING_LEN); } kmem_free(dev, sizeof(*dev)); } /* * The general mechanism for detaching drivers works as follows: Each * driver is responsible for maintaining a reference count on the * number of outstanding references to its softc (e.g. from * processing hanging in a read or write). The detach method of the * driver decrements this counter and flags in the softc that the * driver is dying and then wakes any sleepers. It then sleeps on the * softc. Each place that can sleep must maintain the reference * count. When the reference count drops to -1 (0 is the normal value * of the reference count) then a wakeup on the softc is performed * signaling to the detach waiter that all references are gone. */ /* * Called from process context when we discover that a port has * been disconnected. */ int usb_disconnect_port(struct usbd_port *up, device_t parent, int flags) { struct usbd_device *dev = up->up_dev; device_t subdev; char subdevname[16]; const char *hubname = device_xname(parent); int i, rc; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "up=%#jx dev=%#jx port=%jd", (uintptr_t)up, (uintptr_t)dev, up->up_portno, 0); if (dev == NULL) { return 0; } usbd_suspend_pipe(dev->ud_pipe0); if (dev->ud_subdevlen > 0) { DPRINTFN(3, "disconnect subdevs", 0, 0, 0, 0); for (i = 0; i < dev->ud_subdevlen; i++) { if ((subdev = dev->ud_subdevs[i]) == NULL) continue; strlcpy(subdevname, device_xname(subdev), sizeof(subdevname)); KERNEL_LOCK(1, curlwp); rc = config_detach(subdev, flags); KERNEL_UNLOCK_ONE(curlwp); if (rc != 0) return rc; printf("%s: at %s", subdevname, hubname); if (up->up_portno != 0) printf(" port %d", up->up_portno); printf(" (addr %d) disconnected\n", dev->ud_addr); } KASSERT(!dev->ud_nifaces_claimed); } mutex_enter(dev->ud_bus->ub_lock); dev->ud_bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = NULL; up->up_dev = NULL; mutex_exit(dev->ud_bus->ub_lock); usbd_add_dev_event(USB_EVENT_DEVICE_DETACH, dev); usb_free_device(dev); return 0; }