/* $NetBSD: usb.c,v 1.203 2024/02/04 05:43:06 mrg Exp $ */ /* * Copyright (c) 1998, 2002, 2008, 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology and Matthew R. Green (mrg@eterna23.net). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB specifications and other documentation can be found at * http://www.usb.org/developers/docs/ and * http://www.usb.org/developers/devclass_docs/ */ #include __KERNEL_RCSID(0, "$NetBSD: usb.c,v 1.203 2024/02/04 05:43:06 mrg Exp $"); #ifdef _KERNEL_OPT #include "opt_usb.h" #include "opt_ddb.h" #include "opt_compat_netbsd.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ioconf.h" #if defined(USB_DEBUG) #ifndef USBHIST_SIZE #define USBHIST_SIZE 50000 #endif static struct kern_history_ent usbhistbuf[USBHIST_SIZE]; USBHIST_DEFINE(usbhist) = KERNHIST_INITIALIZER(usbhist, usbhistbuf); #endif #define USB_DEV_MINOR 255 #ifdef USB_DEBUG /* * 0 - do usual exploration * 1 - do not use timeout exploration * >1 - do no exploration */ int usb_noexplore = 0; #ifndef USB_DEBUG_DEFAULT #define USB_DEBUG_DEFAULT 0 #endif int usbdebug = USB_DEBUG_DEFAULT; SYSCTL_SETUP(sysctl_hw_usb_setup, "sysctl hw.usb setup") { int err; const struct sysctlnode *rnode; const struct sysctlnode *cnode; err = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "usb", SYSCTL_DESCR("usb global controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (err) goto fail; /* control debugging printfs */ err = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), NULL, 0, &usbdebug, sizeof(usbdebug), CTL_CREATE, CTL_EOL); if (err) goto fail; return; fail: aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); } #else #define usb_noexplore 0 #endif #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usbdebug,FMT,A,B,C,D) #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbdebug,N,FMT,A,B,C,D) struct usb_softc { #if 0 device_t sc_dev; /* base device */ #endif struct usbd_bus *sc_bus; /* USB controller */ struct usbd_port sc_port; /* dummy port for root hub */ struct lwp *sc_event_thread; struct lwp *sc_attach_thread; char sc_dying; bool sc_pmf_registered; }; struct usb_taskq { TAILQ_HEAD(, usb_task) tasks; kmutex_t lock; kcondvar_t cv; struct lwp *task_thread_lwp; const char *name; struct usb_task *current_task; }; static struct usb_taskq usb_taskq[USB_NUM_TASKQS]; /* XXX wrong place */ #ifdef KDTRACE_HOOKS #define __dtrace_used #else #define __dtrace_used __unused #endif SDT_PROVIDER_DEFINE(usb); SDT_PROBE_DEFINE3(usb, kernel, task, add, "struct usbd_device *"/*dev*/, "struct usb_task *"/*task*/, "int"/*q*/); SDT_PROBE_DEFINE2(usb, kernel, task, rem__start, "struct usbd_device *"/*dev*/, "struct usb_task *"/*task*/); SDT_PROBE_DEFINE3(usb, kernel, task, rem__done, "struct usbd_device *"/*dev*/, "struct usb_task *"/*task*/, "bool"/*removed*/); SDT_PROBE_DEFINE4(usb, kernel, task, rem__wait__start, "struct usbd_device *"/*dev*/, "struct usb_task *"/*task*/, "int"/*queue*/, "kmutex_t *"/*interlock*/); SDT_PROBE_DEFINE5(usb, kernel, task, rem__wait__done, "struct usbd_device *"/*dev*/, "struct usb_task *"/*task*/, "int"/*queue*/, "kmutex_t *"/*interlock*/, "bool"/*done*/); SDT_PROBE_DEFINE1(usb, kernel, task, start, "struct usb_task *"/*task*/); SDT_PROBE_DEFINE1(usb, kernel, task, done, "struct usb_task *"/*task*/); SDT_PROBE_DEFINE1(usb, kernel, bus, needs__explore, "struct usbd_bus *"/*bus*/); SDT_PROBE_DEFINE1(usb, kernel, bus, needs__reattach, "struct usbd_bus *"/*bus*/); SDT_PROBE_DEFINE1(usb, kernel, bus, discover__start, "struct usbd_bus *"/*bus*/); SDT_PROBE_DEFINE1(usb, kernel, bus, discover__done, "struct usbd_bus *"/*bus*/); SDT_PROBE_DEFINE1(usb, kernel, bus, explore__start, "struct usbd_bus *"/*bus*/); SDT_PROBE_DEFINE1(usb, kernel, bus, explore__done, "struct usbd_bus *"/*bus*/); SDT_PROBE_DEFINE1(usb, kernel, event, add, "struct usb_event *"/*uep*/); SDT_PROBE_DEFINE1(usb, kernel, event, drop, "struct usb_event *"/*uep*/); dev_type_open(usbopen); dev_type_close(usbclose); dev_type_read(usbread); dev_type_ioctl(usbioctl); dev_type_poll(usbpoll); dev_type_kqfilter(usbkqfilter); const struct cdevsw usb_cdevsw = { .d_open = usbopen, .d_close = usbclose, .d_read = usbread, .d_write = nowrite, .d_ioctl = usbioctl, .d_stop = nostop, .d_tty = notty, .d_poll = usbpoll, .d_mmap = nommap, .d_kqfilter = usbkqfilter, .d_discard = nodiscard, .d_flag = D_OTHER }; Static void usb_discover(struct usb_softc *); Static void usb_create_event_thread(device_t); Static void usb_event_thread(void *); Static void usb_task_thread(void *); /* * Count of USB busses */ int nusbbusses = 0; #define USB_MAX_EVENTS 100 struct usb_event_q { struct usb_event ue; SIMPLEQ_ENTRY(usb_event_q) next; }; Static SIMPLEQ_HEAD(, usb_event_q) usb_events = SIMPLEQ_HEAD_INITIALIZER(usb_events); Static int usb_nevents = 0; Static struct selinfo usb_selevent; Static kmutex_t usb_event_lock; Static kcondvar_t usb_event_cv; /* XXX this is gross and broken */ Static proc_t *usb_async_proc; /* process that wants USB SIGIO */ Static void *usb_async_sih; Static int usb_dev_open = 0; Static struct usb_event *usb_alloc_event(void); Static void usb_free_event(struct usb_event *); Static void usb_add_event(int, struct usb_event *); Static int usb_get_next_event(struct usb_event *); Static void usb_async_intr(void *); Static void usb_soft_intr(void *); Static const char *usbrev_str[] = USBREV_STR; static int usb_match(device_t, cfdata_t, void *); static void usb_attach(device_t, device_t, void *); static int usb_detach(device_t, int); static int usb_activate(device_t, enum devact); static void usb_childdet(device_t, device_t); static int usb_once_init(void); static void usb_doattach(device_t); CFATTACH_DECL3_NEW(usb, sizeof(struct usb_softc), usb_match, usb_attach, usb_detach, usb_activate, NULL, usb_childdet, DVF_DETACH_SHUTDOWN); static const char *taskq_names[] = USB_TASKQ_NAMES; int usb_match(device_t parent, cfdata_t match, void *aux) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); return UMATCH_GENERIC; } void usb_attach(device_t parent, device_t self, void *aux) { static ONCE_DECL(init_control); struct usb_softc *sc = device_private(self); int usbrev; sc->sc_bus = aux; usbrev = sc->sc_bus->ub_revision; cv_init(&sc->sc_bus->ub_needsexplore_cv, "usbevt"); cv_init(&sc->sc_bus->ub_rhxfercv, "usbrhxfer"); sc->sc_pmf_registered = false; aprint_naive("\n"); aprint_normal(": USB revision %s", usbrev_str[usbrev]); switch (usbrev) { case USBREV_1_0: case USBREV_1_1: case USBREV_2_0: case USBREV_3_0: case USBREV_3_1: break; default: aprint_error(", not supported\n"); sc->sc_dying = 1; return; } aprint_normal("\n"); /* XXX we should have our own level */ sc->sc_bus->ub_soft = softint_establish(SOFTINT_USB | SOFTINT_MPSAFE, usb_soft_intr, sc->sc_bus); if (sc->sc_bus->ub_soft == NULL) { aprint_error("%s: can't register softintr\n", device_xname(self)); sc->sc_dying = 1; return; } sc->sc_bus->ub_methods->ubm_getlock(sc->sc_bus, &sc->sc_bus->ub_lock); KASSERT(sc->sc_bus->ub_lock != NULL); RUN_ONCE(&init_control, usb_once_init); config_interrupts(self, usb_doattach); } #ifdef DDB #include #include #include static void db_usb_xfer(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif) { struct usbd_xfer *xfer = (struct usbd_xfer *)(uintptr_t)addr; if (!have_addr) { db_printf("%s: need usbd_xfer address\n", __func__); return; } db_printf("usb xfer: %p pipe %p priv %p buffer %p\n", xfer, xfer->ux_pipe, xfer->ux_priv, xfer->ux_buffer); db_printf(" len %x actlen %x flags %x timeout %x status %x\n", xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout, xfer->ux_status); db_printf(" callback %p done %x state %x tm_set %x tm_reset %x\n", xfer->ux_callback, xfer->ux_done, xfer->ux_state, xfer->ux_timeout_set, xfer->ux_timeout_reset); } static void db_usb_xferlist(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif) { struct usbd_pipe *pipe = (struct usbd_pipe *)(uintptr_t)addr; struct usbd_xfer *xfer; if (!have_addr) { db_printf("%s: need usbd_pipe address\n", __func__); return; } db_printf("usb pipe: %p\n", pipe); unsigned xfercount = 0; SIMPLEQ_FOREACH(xfer, &pipe->up_queue, ux_next) { db_printf(" xfer = %p%s", xfer, xfercount == 0 || xfercount % 2 == 0 ? "" : "\n"); xfercount++; } } static const struct db_command db_usb_command_table[] = { { DDB_ADD_CMD("usbxfer", db_usb_xfer, 0, "display a USB xfer structure", NULL, NULL) }, { DDB_ADD_CMD("usbxferlist", db_usb_xferlist, 0, "display a USB xfer structure given pipe", NULL, NULL) }, { DDB_END_CMD }, }; static void usb_init_ddb(void) { (void)db_register_tbl(DDB_SHOW_CMD, db_usb_command_table); } #else #define usb_init_ddb() /* nothing */ #endif static int usb_once_init(void) { struct usb_taskq *taskq; int i; USBHIST_LINK_STATIC(usbhist); selinit(&usb_selevent); mutex_init(&usb_event_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&usb_event_cv, "usbrea"); for (i = 0; i < USB_NUM_TASKQS; i++) { taskq = &usb_taskq[i]; TAILQ_INIT(&taskq->tasks); /* * Since USB task methods usb_{add,rem}_task are callable * from any context, we have to make this lock a spinlock. */ mutex_init(&taskq->lock, MUTEX_DEFAULT, IPL_USB); cv_init(&taskq->cv, "usbtsk"); taskq->name = taskq_names[i]; taskq->current_task = NULL; if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, usb_task_thread, taskq, &taskq->task_thread_lwp, "%s", taskq->name)) { printf("unable to create task thread: %s\n", taskq->name); panic("usb_create_event_thread task"); } /* * XXX we should make sure these threads are alive before * end up using them in usb_doattach(). */ } KASSERT(usb_async_sih == NULL); usb_async_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, usb_async_intr, NULL); usb_init_ddb(); return 0; } static void usb_doattach(device_t self) { struct usb_softc *sc = device_private(self); struct usbd_device *dev; usbd_status err; int speed; struct usb_event *ue; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); KASSERT(KERNEL_LOCKED_P()); /* Protected by KERNEL_LOCK */ nusbbusses++; sc->sc_bus->ub_usbctl = self; sc->sc_port.up_power = USB_MAX_POWER; switch (sc->sc_bus->ub_revision) { case USBREV_1_0: case USBREV_1_1: speed = USB_SPEED_FULL; break; case USBREV_2_0: speed = USB_SPEED_HIGH; break; case USBREV_3_0: speed = USB_SPEED_SUPER; break; case USBREV_3_1: speed = USB_SPEED_SUPER_PLUS; break; default: panic("usb_doattach"); } ue = usb_alloc_event(); ue->u.ue_ctrlr.ue_bus = device_unit(self); usb_add_event(USB_EVENT_CTRLR_ATTACH, ue); sc->sc_attach_thread = curlwp; err = usbd_new_device(self, sc->sc_bus, 0, speed, 0, &sc->sc_port); sc->sc_attach_thread = NULL; if (!err) { dev = sc->sc_port.up_dev; if (dev->ud_hub == NULL) { sc->sc_dying = 1; aprint_error("%s: root device is not a hub\n", device_xname(self)); return; } sc->sc_bus->ub_roothub = dev; usb_create_event_thread(self); } else { aprint_error("%s: root hub problem, error=%s\n", device_xname(self), usbd_errstr(err)); sc->sc_dying = 1; } /* * Drop this reference after the first set of attachments in the * event thread. */ config_pending_incr(self); if (!pmf_device_register(self, NULL, NULL)) aprint_error_dev(self, "couldn't establish power handler\n"); else sc->sc_pmf_registered = true; return; } void usb_create_event_thread(device_t self) { struct usb_softc *sc = device_private(self); if (kthread_create(PRI_NONE, 0, NULL, usb_event_thread, sc, &sc->sc_event_thread, "%s", device_xname(self))) { printf("%s: unable to create event thread for\n", device_xname(self)); panic("usb_create_event_thread"); } } bool usb_in_event_thread(device_t dev) { struct usb_softc *sc; if (cold) return true; for (; dev; dev = device_parent(dev)) { if (device_is_a(dev, "usb")) break; } if (dev == NULL) return false; sc = device_private(dev); return curlwp == sc->sc_event_thread || curlwp == sc->sc_attach_thread; } /* * Add a task to be performed by the task thread. This function can be * called from any context and the task will be executed in a process * context ASAP. */ void usb_add_task(struct usbd_device *dev, struct usb_task *task, int queue) { struct usb_taskq *taskq; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); SDT_PROBE3(usb, kernel, task, add, dev, task, queue); KASSERT(0 <= queue); KASSERT(queue < USB_NUM_TASKQS); taskq = &usb_taskq[queue]; mutex_enter(&taskq->lock); if (atomic_cas_uint(&task->queue, USB_NUM_TASKQS, queue) == USB_NUM_TASKQS) { DPRINTFN(2, "task=%#jx", (uintptr_t)task, 0, 0, 0); TAILQ_INSERT_TAIL(&taskq->tasks, task, next); cv_signal(&taskq->cv); } else { DPRINTFN(2, "task=%#jx on q", (uintptr_t)task, 0, 0, 0); } mutex_exit(&taskq->lock); } /* * usb_rem_task(dev, task) * * If task is queued to run, remove it from the queue. Return * true if it successfully removed the task from the queue, false * if not. * * Caller is _not_ guaranteed that the task is not running when * this is done. * * Never sleeps. */ bool usb_rem_task(struct usbd_device *dev, struct usb_task *task) { unsigned queue; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); SDT_PROBE2(usb, kernel, task, rem__start, dev, task); while ((queue = task->queue) != USB_NUM_TASKQS) { struct usb_taskq *taskq = &usb_taskq[queue]; mutex_enter(&taskq->lock); if (__predict_true(task->queue == queue)) { TAILQ_REMOVE(&taskq->tasks, task, next); task->queue = USB_NUM_TASKQS; mutex_exit(&taskq->lock); SDT_PROBE3(usb, kernel, task, rem__done, dev, task, true); return true; /* removed from the queue */ } mutex_exit(&taskq->lock); } SDT_PROBE3(usb, kernel, task, rem__done, dev, task, false); return false; /* was not removed from the queue */ } /* * usb_rem_task_wait(dev, task, queue, interlock) * * If task is scheduled to run, remove it from the queue. If it * may have already begun to run, drop interlock if not null, wait * for it to complete, and reacquire interlock if not null. * Return true if it successfully removed the task from the queue, * false if not. * * Caller MUST guarantee that task will not be scheduled on a * _different_ queue, at least until after this returns. * * If caller guarantees that task will not be scheduled on the * same queue before this returns, then caller is guaranteed that * the task is not running at all when this returns. * * May sleep. */ bool usb_rem_task_wait(struct usbd_device *dev, struct usb_task *task, int queue, kmutex_t *interlock) { struct usb_taskq *taskq; int queue1; bool removed; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); SDT_PROBE4(usb, kernel, task, rem__wait__start, dev, task, queue, interlock); ASSERT_SLEEPABLE(); KASSERT(0 <= queue); KASSERT(queue < USB_NUM_TASKQS); taskq = &usb_taskq[queue]; mutex_enter(&taskq->lock); queue1 = task->queue; if (queue1 == USB_NUM_TASKQS) { /* * It is not on the queue. It may be about to run, or * it may have already finished running -- there is no * stopping it now. Wait for it if it is running. */ if (interlock) mutex_exit(interlock); while (taskq->current_task == task) cv_wait(&taskq->cv, &taskq->lock); removed = false; } else { /* * It is still on the queue. We can stop it before the * task thread will run it. */ KASSERTMSG(queue1 == queue, "task %p on q%d expected on q%d", task, queue1, queue); TAILQ_REMOVE(&taskq->tasks, task, next); task->queue = USB_NUM_TASKQS; removed = true; } mutex_exit(&taskq->lock); /* * If there's an interlock, and we dropped it to wait, * reacquire it. */ if (interlock && !removed) mutex_enter(interlock); SDT_PROBE5(usb, kernel, task, rem__wait__done, dev, task, queue, interlock, removed); return removed; } /* * usb_task_pending(dev, task) * * True if task is queued, false if not. Note that if task is * already running, it is not considered queued. * * For _negative_ diagnostic assertions only: * * KASSERT(!usb_task_pending(dev, task)); */ bool usb_task_pending(struct usbd_device *dev, struct usb_task *task) { return task->queue != USB_NUM_TASKQS; } void usb_event_thread(void *arg) { struct usb_softc *sc = arg; struct usbd_bus *bus = sc->sc_bus; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); KASSERT(KERNEL_LOCKED_P()); /* * In case this controller is a companion controller to an * EHCI controller we need to wait until the EHCI controller * has grabbed the port. * XXX It would be nicer to do this with a tsleep(), but I don't * know how to synchronize the creation of the threads so it * will work. */ if (bus->ub_revision < USBREV_2_0) { usb_delay_ms(bus, 500); } /* Make sure first discover does something. */ mutex_enter(bus->ub_lock); sc->sc_bus->ub_needsexplore = 1; usb_discover(sc); mutex_exit(bus->ub_lock); /* Drop the config_pending reference from attach. */ config_pending_decr(bus->ub_usbctl); mutex_enter(bus->ub_lock); while (!sc->sc_dying) { #if 0 /* not yet */ while (sc->sc_bus->ub_usepolling) kpause("usbpoll", true, hz, bus->ub_lock); #endif if (usb_noexplore < 2) usb_discover(sc); cv_timedwait(&bus->ub_needsexplore_cv, bus->ub_lock, usb_noexplore ? 0 : hz * 60); DPRINTFN(2, "sc %#jx woke up", (uintptr_t)sc, 0, 0, 0); } sc->sc_event_thread = NULL; /* In case parent is waiting for us to exit. */ cv_signal(&bus->ub_needsexplore_cv); mutex_exit(bus->ub_lock); DPRINTF("sc %#jx exit", (uintptr_t)sc, 0, 0, 0); kthread_exit(0); } void usb_task_thread(void *arg) { struct usb_task *task; struct usb_taskq *taskq; bool mpsafe; taskq = arg; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "start taskq %#jx", (uintptr_t)taskq, 0, 0, 0); mutex_enter(&taskq->lock); for (;;) { task = TAILQ_FIRST(&taskq->tasks); if (task == NULL) { cv_wait(&taskq->cv, &taskq->lock); task = TAILQ_FIRST(&taskq->tasks); } DPRINTFN(2, "woke up task=%#jx", (uintptr_t)task, 0, 0, 0); if (task != NULL) { mpsafe = ISSET(task->flags, USB_TASKQ_MPSAFE); TAILQ_REMOVE(&taskq->tasks, task, next); task->queue = USB_NUM_TASKQS; taskq->current_task = task; mutex_exit(&taskq->lock); if (!mpsafe) KERNEL_LOCK(1, curlwp); SDT_PROBE1(usb, kernel, task, start, task); task->fun(task->arg); /* Can't dereference task after this point. */ SDT_PROBE1(usb, kernel, task, done, task); if (!mpsafe) KERNEL_UNLOCK_ONE(curlwp); mutex_enter(&taskq->lock); KASSERTMSG(taskq->current_task == task, "somebody scribbled on usb taskq %p", taskq); taskq->current_task = NULL; cv_broadcast(&taskq->cv); } } mutex_exit(&taskq->lock); } int usbctlprint(void *aux, const char *pnp) { /* only "usb"es can attach to host controllers */ if (pnp) aprint_normal("usb at %s", pnp); return UNCONF; } int usbopen(dev_t dev, int flag, int mode, struct lwp *l) { int unit = minor(dev); struct usb_softc *sc; if (nusbbusses == 0) return ENXIO; if (unit == USB_DEV_MINOR) { if (usb_dev_open) return EBUSY; usb_dev_open = 1; mutex_enter(&proc_lock); atomic_store_relaxed(&usb_async_proc, NULL); mutex_exit(&proc_lock); return 0; } sc = device_lookup_private(&usb_cd, unit); if (!sc) return ENXIO; if (sc->sc_dying) return EIO; return 0; } int usbread(dev_t dev, struct uio *uio, int flag) { struct usb_event *ue; struct usb_event30 *ueo = NULL; /* XXXGCC */ int useold = 0; int error, n; if (minor(dev) != USB_DEV_MINOR) return ENXIO; switch (uio->uio_resid) { case sizeof(struct usb_event30): ueo = kmem_zalloc(sizeof(struct usb_event30), KM_SLEEP); useold = 1; /* FALLTHROUGH */ case sizeof(struct usb_event): ue = usb_alloc_event(); break; default: return EINVAL; } error = 0; mutex_enter(&usb_event_lock); for (;;) { n = usb_get_next_event(ue); if (n != 0) break; if (flag & IO_NDELAY) { error = EWOULDBLOCK; break; } error = cv_wait_sig(&usb_event_cv, &usb_event_lock); if (error) break; } mutex_exit(&usb_event_lock); if (!error) { if (useold) { /* copy fields to old struct */ MODULE_HOOK_CALL(usb_subr_copy_30_hook, (ue, ueo, uio), enosys(), error); if (error == ENOSYS) error = EINVAL; if (!error) error = uiomove((void *)ueo, sizeof(*ueo), uio); } else error = uiomove((void *)ue, sizeof(*ue), uio); } usb_free_event(ue); if (ueo) kmem_free(ueo, sizeof(struct usb_event30)); return error; } int usbclose(dev_t dev, int flag, int mode, struct lwp *l) { int unit = minor(dev); if (unit == USB_DEV_MINOR) { mutex_enter(&proc_lock); atomic_store_relaxed(&usb_async_proc, NULL); mutex_exit(&proc_lock); usb_dev_open = 0; } return 0; } int usbioctl(dev_t devt, u_long cmd, void *data, int flag, struct lwp *l) { struct usb_softc *sc; int unit = minor(devt); USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "cmd %#jx", cmd, 0, 0, 0); if (unit == USB_DEV_MINOR) { switch (cmd) { case FIONBIO: /* All handled in the upper FS layer. */ return 0; case FIOASYNC: mutex_enter(&proc_lock); atomic_store_relaxed(&usb_async_proc, *(int *)data ? l->l_proc : NULL); mutex_exit(&proc_lock); return 0; default: return EINVAL; } } sc = device_lookup_private(&usb_cd, unit); if (sc->sc_dying) return EIO; int error = 0; switch (cmd) { #ifdef USB_DEBUG case USB_SETDEBUG: if (!(flag & FWRITE)) return EBADF; usbdebug = ((*(int *)data) & 0x000000ff); break; #endif /* USB_DEBUG */ case USB_REQUEST: { struct usb_ctl_request *ur = (void *)data; int len = UGETW(ur->ucr_request.wLength); struct iovec iov; struct uio uio; void *ptr = 0; int addr = ur->ucr_addr; usbd_status err; if (!(flag & FWRITE)) { error = EBADF; goto fail; } DPRINTF("USB_REQUEST addr=%jd len=%jd", addr, len, 0, 0); if (len < 0 || len > 32768) { error = EINVAL; goto fail; } if (addr < 0 || addr >= USB_MAX_DEVICES) { error = EINVAL; goto fail; } size_t dindex = usb_addr2dindex(addr); if (sc->sc_bus->ub_devices[dindex] == NULL) { error = EINVAL; goto fail; } if (len != 0) { iov.iov_base = (void *)ur->ucr_data; iov.iov_len = len; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_resid = len; uio.uio_offset = 0; uio.uio_rw = ur->ucr_request.bmRequestType & UT_READ ? UIO_READ : UIO_WRITE; uio.uio_vmspace = l->l_proc->p_vmspace; ptr = kmem_alloc(len, KM_SLEEP); if (uio.uio_rw == UIO_WRITE) { error = uiomove(ptr, len, &uio); if (error) goto ret; } } err = usbd_do_request_flags(sc->sc_bus->ub_devices[dindex], &ur->ucr_request, ptr, ur->ucr_flags, &ur->ucr_actlen, USBD_DEFAULT_TIMEOUT); if (err) { error = EIO; goto ret; } if (len > ur->ucr_actlen) len = ur->ucr_actlen; if (len != 0) { if (uio.uio_rw == UIO_READ) { error = uiomove(ptr, len, &uio); if (error) goto ret; } } ret: if (ptr) { len = UGETW(ur->ucr_request.wLength); kmem_free(ptr, len); } break; } case USB_DEVICEINFO: { struct usbd_device *dev; struct usb_device_info *di = (void *)data; int addr = di->udi_addr; if (addr < 0 || addr >= USB_MAX_DEVICES) { error = EINVAL; goto fail; } size_t dindex = usb_addr2dindex(addr); if ((dev = sc->sc_bus->ub_devices[dindex]) == NULL) { error = ENXIO; goto fail; } usbd_fill_deviceinfo(dev, di, 1); break; } case USB_DEVICEINFO_30: { struct usbd_device *dev; struct usb_device_info30 *di = (void *)data; int addr = di->udi_addr; if (addr < 1 || addr >= USB_MAX_DEVICES) { error = EINVAL; goto fail; } size_t dindex = usb_addr2dindex(addr); if ((dev = sc->sc_bus->ub_devices[dindex]) == NULL) { error = ENXIO; goto fail; } MODULE_HOOK_CALL(usb_subr_fill_30_hook, (dev, di, 1, usbd_devinfo_vp, usbd_printBCD), enosys(), error); if (error == ENOSYS) error = EINVAL; if (error) goto fail; break; } case USB_DEVICESTATS: *(struct usb_device_stats *)data = sc->sc_bus->ub_stats; break; default: error = EINVAL; } fail: DPRINTF("... done (error = %jd)", error, 0, 0, 0); return error; } int usbpoll(dev_t dev, int events, struct lwp *l) { int revents, mask; if (minor(dev) == USB_DEV_MINOR) { revents = 0; mask = POLLIN | POLLRDNORM; mutex_enter(&usb_event_lock); if (events & mask && usb_nevents > 0) revents |= events & mask; if (revents == 0 && events & mask) selrecord(l, &usb_selevent); mutex_exit(&usb_event_lock); return revents; } else { return 0; } } static void filt_usbrdetach(struct knote *kn) { mutex_enter(&usb_event_lock); selremove_knote(&usb_selevent, kn); mutex_exit(&usb_event_lock); } static int filt_usbread(struct knote *kn, long hint) { if (usb_nevents == 0) return 0; kn->kn_data = sizeof(struct usb_event); return 1; } static const struct filterops usbread_filtops = { .f_flags = FILTEROP_ISFD, .f_attach = NULL, .f_detach = filt_usbrdetach, .f_event = filt_usbread, }; int usbkqfilter(dev_t dev, struct knote *kn) { switch (kn->kn_filter) { case EVFILT_READ: if (minor(dev) != USB_DEV_MINOR) return 1; kn->kn_fop = &usbread_filtops; break; default: return EINVAL; } kn->kn_hook = NULL; mutex_enter(&usb_event_lock); selrecord_knote(&usb_selevent, kn); mutex_exit(&usb_event_lock); return 0; } /* Explore device tree from the root. */ Static void usb_discover(struct usb_softc *sc) { struct usbd_bus *bus = sc->sc_bus; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); KASSERT(KERNEL_LOCKED_P()); KASSERT(mutex_owned(bus->ub_lock)); if (usb_noexplore > 1) return; /* * We need mutual exclusion while traversing the device tree, * but this is guaranteed since this function is only called * from the event thread for the controller. * * Also, we now have bus->ub_lock held, and in combination * with ub_exploring, avoids interferring with polling. */ SDT_PROBE1(usb, kernel, bus, discover__start, bus); while (bus->ub_needsexplore && !sc->sc_dying) { bus->ub_needsexplore = 0; mutex_exit(sc->sc_bus->ub_lock); SDT_PROBE1(usb, kernel, bus, explore__start, bus); bus->ub_roothub->ud_hub->uh_explore(bus->ub_roothub); SDT_PROBE1(usb, kernel, bus, explore__done, bus); mutex_enter(bus->ub_lock); } SDT_PROBE1(usb, kernel, bus, discover__done, bus); } void usb_needs_explore(struct usbd_device *dev) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); SDT_PROBE1(usb, kernel, bus, needs__explore, dev->ud_bus); mutex_enter(dev->ud_bus->ub_lock); dev->ud_bus->ub_needsexplore = 1; cv_signal(&dev->ud_bus->ub_needsexplore_cv); mutex_exit(dev->ud_bus->ub_lock); } void usb_needs_reattach(struct usbd_device *dev) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); SDT_PROBE1(usb, kernel, bus, needs__reattach, dev->ud_bus); mutex_enter(dev->ud_bus->ub_lock); dev->ud_powersrc->up_reattach = 1; dev->ud_bus->ub_needsexplore = 1; cv_signal(&dev->ud_bus->ub_needsexplore_cv); mutex_exit(dev->ud_bus->ub_lock); } /* Called at with usb_event_lock held. */ int usb_get_next_event(struct usb_event *ue) { struct usb_event_q *ueq; KASSERT(mutex_owned(&usb_event_lock)); if (usb_nevents <= 0) return 0; ueq = SIMPLEQ_FIRST(&usb_events); #ifdef DIAGNOSTIC if (ueq == NULL) { printf("usb: usb_nevents got out of sync! %d\n", usb_nevents); usb_nevents = 0; return 0; } #endif if (ue) *ue = ueq->ue; SIMPLEQ_REMOVE_HEAD(&usb_events, next); usb_free_event((struct usb_event *)(void *)ueq); usb_nevents--; return 1; } void usbd_add_dev_event(int type, struct usbd_device *udev) { struct usb_event *ue = usb_alloc_event(); usbd_fill_deviceinfo(udev, &ue->u.ue_device, false); usb_add_event(type, ue); } void usbd_add_drv_event(int type, struct usbd_device *udev, device_t dev) { struct usb_event *ue = usb_alloc_event(); ue->u.ue_driver.ue_cookie = udev->ud_cookie; strncpy(ue->u.ue_driver.ue_devname, device_xname(dev), sizeof(ue->u.ue_driver.ue_devname)); usb_add_event(type, ue); } Static struct usb_event * usb_alloc_event(void) { /* Yes, this is right; we allocate enough so that we can use it later */ return kmem_zalloc(sizeof(struct usb_event_q), KM_SLEEP); } Static void usb_free_event(struct usb_event *uep) { kmem_free(uep, sizeof(struct usb_event_q)); } Static void usb_add_event(int type, struct usb_event *uep) { struct usb_event_q *ueq; struct timeval thetime; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); microtime(&thetime); /* Don't want to wait here with usb_event_lock held */ ueq = (struct usb_event_q *)(void *)uep; ueq->ue = *uep; ueq->ue.ue_type = type; TIMEVAL_TO_TIMESPEC(&thetime, &ueq->ue.ue_time); SDT_PROBE1(usb, kernel, event, add, uep); mutex_enter(&usb_event_lock); if (++usb_nevents >= USB_MAX_EVENTS) { /* Too many queued events, drop an old one. */ DPRINTF("event dropped", 0, 0, 0, 0); #ifdef KDTRACE_HOOKS struct usb_event oue; if (usb_get_next_event(&oue)) SDT_PROBE1(usb, kernel, event, drop, &oue); #else usb_get_next_event(NULL); #endif } SIMPLEQ_INSERT_TAIL(&usb_events, ueq, next); cv_signal(&usb_event_cv); selnotify(&usb_selevent, 0, 0); if (atomic_load_relaxed(&usb_async_proc) != NULL) { kpreempt_disable(); softint_schedule(usb_async_sih); kpreempt_enable(); } mutex_exit(&usb_event_lock); } Static void usb_async_intr(void *cookie) { proc_t *proc; mutex_enter(&proc_lock); if ((proc = atomic_load_relaxed(&usb_async_proc)) != NULL) psignal(proc, SIGIO); mutex_exit(&proc_lock); } Static void usb_soft_intr(void *arg) { struct usbd_bus *bus = arg; mutex_enter(bus->ub_lock); bus->ub_methods->ubm_softint(bus); mutex_exit(bus->ub_lock); } void usb_schedsoftintr(struct usbd_bus *bus) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "polling=%jd", bus->ub_usepolling, 0, 0, 0); /* In case the bus never finished setting up. */ if (__predict_false(bus->ub_soft == NULL)) return; if (bus->ub_usepolling) { bus->ub_methods->ubm_softint(bus); } else { kpreempt_disable(); softint_schedule(bus->ub_soft); kpreempt_enable(); } } int usb_activate(device_t self, enum devact act) { struct usb_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: sc->sc_dying = 1; return 0; default: return EOPNOTSUPP; } } void usb_childdet(device_t self, device_t child) { int i; struct usb_softc *sc = device_private(self); struct usbd_device *dev; if ((dev = sc->sc_port.up_dev) == NULL || dev->ud_subdevlen == 0) return; for (i = 0; i < dev->ud_subdevlen; i++) if (dev->ud_subdevs[i] == child) dev->ud_subdevs[i] = NULL; } int usb_detach(device_t self, int flags) { struct usb_softc *sc = device_private(self); struct usb_event *ue; int rc; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); /* Make all devices disconnect. */ if (sc->sc_port.up_dev != NULL && (rc = usb_disconnect_port(&sc->sc_port, self, flags)) != 0) return rc; if (sc->sc_pmf_registered) pmf_device_deregister(self); /* Kill off event thread. */ sc->sc_dying = 1; while (sc->sc_event_thread != NULL) { mutex_enter(sc->sc_bus->ub_lock); cv_signal(&sc->sc_bus->ub_needsexplore_cv); cv_timedwait(&sc->sc_bus->ub_needsexplore_cv, sc->sc_bus->ub_lock, hz * 60); mutex_exit(sc->sc_bus->ub_lock); } DPRINTF("event thread dead", 0, 0, 0, 0); if (sc->sc_bus->ub_soft != NULL) { softint_disestablish(sc->sc_bus->ub_soft); sc->sc_bus->ub_soft = NULL; } ue = usb_alloc_event(); ue->u.ue_ctrlr.ue_bus = device_unit(self); usb_add_event(USB_EVENT_CTRLR_DETACH, ue); cv_destroy(&sc->sc_bus->ub_needsexplore_cv); cv_destroy(&sc->sc_bus->ub_rhxfercv); return 0; }