/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ /* $NetBSD: if_zyd.c,v 1.61 2024/02/09 22:08:37 andvar Exp $ */ /*- * Copyright (c) 2006 by Damien Bergamini * Copyright (c) 2006 by Florian Stoehr * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * ZyDAS ZD1211/ZD1211B USB WLAN driver. */ #include __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.61 2024/02/09 22:08:37 andvar Exp $"); #ifdef _KERNEL_OPT #include "opt_usb.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ZYD_DEBUG #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) int zyddebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; /* various supported device vendors/products */ #define ZYD_ZD1211_DEV(v, p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } #define ZYD_ZD1211B_DEV(v, p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } static const struct zyd_type { struct usb_devno dev; uint8_t rev; #define ZYD_ZD1211 0 #define ZYD_ZD1211B 1 } zyd_devs[] = { ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), ZYD_ZD1211_DEV(ABOCOM, WL54), ZYD_ZD1211_DEV(ASUSTEK, WL159G), ZYD_ZD1211_DEV(CYBERTAN, TG54USB), ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), ZYD_ZD1211_DEV(SAGEM, XG760A), ZYD_ZD1211_DEV(SENAO, NUB8301), ZYD_ZD1211_DEV(SITECOMEU, WL113), ZYD_ZD1211_DEV(SWEEX, ZD1211), ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), ZYD_ZD1211_DEV(TWINMOS, G240), ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), ZYD_ZD1211_DEV(UMEDIA, TEW429UB), ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), ZYD_ZD1211_DEV(ZCOM, ZD1211), ZYD_ZD1211_DEV(ZYDAS, ZD1211), ZYD_ZD1211_DEV(ZYXEL, AG225H), ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), ZYD_ZD1211_DEV(ZYXEL, G200V2), ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR), ZYD_ZD1211B_DEV(ACCTON, WUS201), ZYD_ZD1211B_DEV(ACCTON, ZD1211B), ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), ZYD_ZD1211B_DEV(BELKIN, F5D7050C), ZYD_ZD1211B_DEV(BELKIN, ZD1211B), ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR), ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), ZYD_ZD1211B_DEV(FIBERLINE, WL430U), ZYD_ZD1211B_DEV(MELCO, KG54L), ZYD_ZD1211B_DEV(PHILIPS, SNU5600), ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05), ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), ZYD_ZD1211B_DEV(SAGEM, XG76NA), ZYD_ZD1211B_DEV(SITECOMEU, WL603), ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), ZYD_ZD1211B_DEV(SONY, IFU_WLM2), ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B), ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), ZYD_ZD1211B_DEV(USR, USR5423), ZYD_ZD1211B_DEV(VTECH, ZD1211B), ZYD_ZD1211B_DEV(ZCOM, ZD1211B), ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2), ZYD_ZD1211B_DEV(ZYXEL, M202), ZYD_ZD1211B_DEV(ZYXEL, G220V2), }; #define zyd_lookup(v, p) \ ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) static int zyd_match(device_t, cfdata_t, void *); static void zyd_attach(device_t, device_t, void *); static int zyd_detach(device_t, int); static int zyd_activate(device_t, enum devact); CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, zyd_attach, zyd_detach, zyd_activate); Static void zyd_attachhook(device_t); Static int zyd_complete_attach(struct zyd_softc *); Static int zyd_open_pipes(struct zyd_softc *); Static void zyd_close_pipes(struct zyd_softc *); Static int zyd_alloc_tx_list(struct zyd_softc *); Static void zyd_free_tx_list(struct zyd_softc *); Static int zyd_alloc_rx_list(struct zyd_softc *); Static void zyd_free_rx_list(struct zyd_softc *); Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); Static int zyd_media_change(struct ifnet *); Static void zyd_next_scan(void *); Static void zyd_task(void *); Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, void *, int, u_int); Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); Static int zyd_rfwrite(struct zyd_softc *, uint32_t); Static void zyd_lock_phy(struct zyd_softc *); Static void zyd_unlock_phy(struct zyd_softc *); Static int zyd_rfmd_init(struct zyd_rf *); Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); Static int zyd_al2230_init(struct zyd_rf *); Static int zyd_al2230_switch_radio(struct zyd_rf *, int); Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); Static int zyd_al2230_init_b(struct zyd_rf *); Static int zyd_al7230B_init(struct zyd_rf *); Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); Static int zyd_al2210_init(struct zyd_rf *); Static int zyd_al2210_switch_radio(struct zyd_rf *, int); Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); Static int zyd_gct_init(struct zyd_rf *); Static int zyd_gct_switch_radio(struct zyd_rf *, int); Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); Static int zyd_maxim_init(struct zyd_rf *); Static int zyd_maxim_switch_radio(struct zyd_rf *, int); Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); Static int zyd_maxim2_init(struct zyd_rf *); Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); Static int zyd_rf_attach(struct zyd_softc *, uint8_t); Static const char *zyd_rf_name(uint8_t); Static int zyd_hw_init(struct zyd_softc *); Static int zyd_read_eeprom(struct zyd_softc *); Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); Static int zyd_switch_radio(struct zyd_softc *, int); Static void zyd_set_led(struct zyd_softc *, int, int); Static int zyd_set_rxfilter(struct zyd_softc *); Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); Static int zyd_set_beacon_interval(struct zyd_softc *, int); Static uint8_t zyd_plcp_signal(int); Static void zyd_intr(struct usbd_xfer *, void *, usbd_status); Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status); Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status); Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, struct ieee80211_node *); Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, struct ieee80211_node *); Static void zyd_start(struct ifnet *); Static void zyd_watchdog(struct ifnet *); Static int zyd_ioctl(struct ifnet *, u_long, void *); Static int zyd_init(struct ifnet *); Static void zyd_stop(struct ifnet *, int); Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); Static void zyd_iter_func(void *, struct ieee80211_node *); Static void zyd_amrr_timeout(void *); Static void zyd_newassoc(struct ieee80211_node *, int); static int zyd_match(device_t parent, cfdata_t match, void *aux) { struct usb_attach_arg *uaa = aux; return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } Static void zyd_attachhook(device_t self) { struct zyd_softc *sc = device_private(self); firmware_handle_t fwh; const char *fwname; u_char *fw; size_t size; int error; fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { aprint_error_dev(sc->sc_dev, "failed to open firmware %s (error=%d)\n", fwname, error); return; } size = firmware_get_size(fwh); fw = firmware_malloc(size); if (fw == NULL) { aprint_error_dev(sc->sc_dev, "failed to allocate firmware memory\n"); firmware_close(fwh); return; } error = firmware_read(fwh, 0, fw, size); firmware_close(fwh); if (error != 0) { aprint_error_dev(sc->sc_dev, "failed to read firmware (error %d)\n", error); firmware_free(fw, size); return; } error = zyd_loadfirmware(sc, fw, size); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not load firmware (error=%d)\n", error); firmware_free(fw, size); return; } firmware_free(fw, size); /* complete the attach process */ if ((error = zyd_complete_attach(sc)) == 0) sc->attached = 1; return; } static void zyd_attach(device_t parent, device_t self, void *aux) { struct zyd_softc *sc = device_private(self); struct usb_attach_arg *uaa = aux; char *devinfop; usb_device_descriptor_t* ddesc; struct ifnet *ifp = &sc->sc_if; sc->sc_dev = self; sc->sc_udev = uaa->uaa_device; aprint_naive("\n"); aprint_normal("\n"); devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev; ddesc = usbd_get_device_descriptor(sc->sc_udev); if (UGETW(ddesc->bcdDevice) < 0x4330) { aprint_error_dev(self, "device version mismatch: %#x " "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); return; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = zyd_init; ifp->if_ioctl = zyd_ioctl; ifp->if_start = zyd_start; ifp->if_watchdog = zyd_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB); cv_init(&sc->sc_cmdcv, "zydcmd"); SIMPLEQ_INIT(&sc->sc_rqh); /* defer configuration after file system is ready to load firmware */ config_mountroot(self, zyd_attachhook); } Static int zyd_complete_attach(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; usbd_status error; int i; usb_init_task(&sc->sc_task, zyd_task, sc, 0); callout_init(&(sc->sc_scan_ch), 0); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 10; callout_init(&sc->sc_amrr_ch, 0); error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); if (error != 0) { aprint_error_dev(sc->sc_dev, "failed to set configuration" ", err=%s\n", usbd_errstr(error)); goto fail; } error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, &sc->sc_iface); if (error != 0) { aprint_error_dev(sc->sc_dev, "getting interface handle failed\n"); goto fail; } if ((error = zyd_open_pipes(sc)) != 0) { aprint_error_dev(sc->sc_dev, "could not open pipes\n"); goto fail; } if ((error = zyd_read_eeprom(sc)) != 0) { aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); goto fail; } if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { aprint_error_dev(sc->sc_dev, "could not attach RF\n"); goto fail; } if ((error = zyd_hw_init(sc)) != 0) { aprint_error_dev(sc->sc_dev, "hardware initialization failed\n"); goto fail; } aprint_normal_dev(sc->sc_dev, "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", (sc->mac_rev == ZYD_ZD1211) ? "": "B", sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), sc->pa_rev, ether_sprintf(ic->ic_myaddr)); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_WEP; /* s/w WEP */ /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } if_attach(ifp); ieee80211_ifattach(ic); ic->ic_node_alloc = zyd_node_alloc; ic->ic_newassoc = zyd_newassoc; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = zyd_newstate; /* XXX media locking needs revisiting */ mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB); ieee80211_media_init_with_lock(ic, zyd_media_change, ieee80211_media_status, &sc->sc_media_mtx); bpf_attach2(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtapu); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); ieee80211_announce(ic); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); fail: return error; } static int zyd_detach(device_t self, int flags) { struct zyd_softc *sc = device_private(self); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; if (!sc->attached) return 0; mutex_enter(&sc->sc_lock); zyd_stop(ifp, 1); callout_halt(&sc->sc_scan_ch, NULL); callout_halt(&sc->sc_amrr_ch, NULL); usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL); /* Abort, etc. done by zyd_stop */ zyd_close_pipes(sc); sc->attached = 0; bpf_detach(ifp); ieee80211_ifdetach(ic); if_detach(ifp); mutex_exit(&sc->sc_lock); mutex_destroy(&sc->sc_lock); cv_destroy(&sc->sc_cmdcv); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); return 0; } Static int zyd_open_pipes(struct zyd_softc *sc) { usb_endpoint_descriptor_t *edesc; usbd_status error; /* interrupt in */ edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); if (edesc == NULL) return EINVAL; sc->ibuf_size = UGETW(edesc->wMaxPacketSize); if (sc->ibuf_size == 0) /* should not happen */ return EINVAL; sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP); error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr, USBD_DEFAULT_INTERVAL); if (error != 0) { printf("%s: open rx intr pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(error)); goto fail; } /* interrupt out (not necessarily an interrupt pipe) */ error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_IOUT]); if (error != 0) { printf("%s: open tx intr pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(error)); goto fail; } /* bulk in */ error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_BIN]); if (error != 0) { printf("%s: open rx pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(error)); goto fail; } /* bulk out */ error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_BOUT]); if (error != 0) { printf("%s: open tx pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(error)); goto fail; } return 0; fail: zyd_close_pipes(sc); return error; } Static void zyd_close_pipes(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_ENDPT_CNT; i++) { if (sc->zyd_ep[i] != NULL) { usbd_close_pipe(sc->zyd_ep[i]); sc->zyd_ep[i] = NULL; } } if (sc->ibuf != NULL) { kmem_free(sc->ibuf, sc->ibuf_size); sc->ibuf = NULL; } } Static int zyd_alloc_tx_list(struct zyd_softc *sc) { int i, error; sc->tx_queued = 0; for (i = 0; i < ZYD_TX_LIST_CNT; i++) { struct zyd_tx_data *data = &sc->tx_data[i]; data->sc = sc; /* backpointer for callbacks */ error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT], ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer); if (error) { printf("%s: could not allocate tx xfer\n", device_xname(sc->sc_dev)); goto fail; } data->buf = usbd_get_buffer(data->xfer); /* clear Tx descriptor */ memset(data->buf, 0, sizeof(struct zyd_tx_desc)); } return 0; fail: zyd_free_tx_list(sc); return error; } Static void zyd_free_tx_list(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_TX_LIST_CNT; i++) { struct zyd_tx_data *data = &sc->tx_data[i]; if (data->xfer != NULL) { usbd_destroy_xfer(data->xfer); data->xfer = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } Static int zyd_alloc_rx_list(struct zyd_softc *sc) { int i, error; for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; data->sc = sc; /* backpointer for callbacks */ error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN], ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer); if (error) { printf("%s: could not allocate rx xfer\n", device_xname(sc->sc_dev)); goto fail; } data->buf = usbd_get_buffer(data->xfer); } return 0; fail: zyd_free_rx_list(sc); return error; } Static void zyd_free_rx_list(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; if (data->xfer != NULL) { usbd_destroy_xfer(data->xfer); data->xfer = NULL; } } } /* ARGUSED */ Static struct ieee80211_node * zyd_node_alloc(struct ieee80211_node_table *nt __unused) { struct zyd_node *zn; zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); return zn ? &zn->ni : NULL; } Static int zyd_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) zyd_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ Static void zyd_next_scan(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ic); } Static void zyd_task(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; ostate = ic->ic_state; switch (sc->sc_state) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* turn link LED off */ zyd_set_led(sc, ZYD_LED1, 0); /* stop data LED from blinking */ zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); } break; case IEEE80211_S_SCAN: zyd_set_chan(sc, ic->ic_curchan); callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: zyd_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_RUN: { struct ieee80211_node *ni = ic->ic_bss; zyd_set_chan(sc, ic->ic_curchan); if (ic->ic_opmode != IEEE80211_M_MONITOR) { /* turn link LED on */ zyd_set_led(sc, ZYD_LED1, 1); /* make data LED blink upon Tx */ zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); zyd_set_bssid(sc, ni->ni_bssid); } if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ zyd_newassoc(ni, 1); } /* start automatic rate control timer */ if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); break; } } sc->sc_newstate(ic, sc->sc_state, -1); } Static int zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct zyd_softc *sc = ic->ic_ifp->if_softc; if (!sc->attached) return ENXIO; /* * XXXSMP: This does not wait for the task, if it is in flight, * to complete. If this code works at all, it must rely on the * kernel lock to serialize with the USB task thread. */ usb_rem_task(sc->sc_udev, &sc->sc_task); callout_stop(&sc->sc_scan_ch); callout_stop(&sc->sc_amrr_ch); /* do it in a process context */ sc->sc_state = nstate; usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); return 0; } Static int zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, void *odata, int olen, u_int flags) { struct usbd_xfer *xfer; struct zyd_cmd cmd; struct rq rq; uint16_t xferflags; int error; usbd_status uerror; error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT], sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer); if (error) return error; cmd.code = htole16(code); memcpy(cmd.data, idata, ilen); xferflags = USBD_FORCE_SHORT_XFER; if (!(flags & ZYD_CMD_FLAG_READ)) xferflags |= USBD_SYNCHRONOUS; else { rq.idata = idata; rq.odata = odata; rq.len = olen / sizeof(struct zyd_pair); mutex_enter(&sc->sc_lock); SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); mutex_exit(&sc->sc_lock); } usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); uerror = usbd_transfer(xfer); if (uerror != USBD_IN_PROGRESS && uerror != 0) { printf("%s: could not send command (error=%s)\n", device_xname(sc->sc_dev), usbd_errstr(uerror)); (void)usbd_destroy_xfer(xfer); return EIO; } if (!(flags & ZYD_CMD_FLAG_READ)) { (void)usbd_destroy_xfer(xfer); return 0; /* write: don't wait for reply */ } /* wait at most one second for command reply */ mutex_enter(&sc->sc_lock); error = cv_timedwait_sig(&sc->sc_cmdcv, &sc->sc_lock, hz); if (error == EWOULDBLOCK) printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); mutex_exit(&sc->sc_lock); (void)usbd_destroy_xfer(xfer); return error; } Static int zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) { struct zyd_pair tmp; int error; reg = htole16(reg); error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), ZYD_CMD_FLAG_READ); if (error == 0) *val = le16toh(tmp.val); else *val = 0; return error; } Static int zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) { struct zyd_pair tmp[2]; uint16_t regs[2]; int error; regs[0] = htole16(ZYD_REG32_HI(reg)); regs[1] = htole16(ZYD_REG32_LO(reg)); error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), ZYD_CMD_FLAG_READ); if (error == 0) *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); else *val = 0; return error; } Static int zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) { struct zyd_pair pair; pair.reg = htole16(reg); pair.val = htole16(val); return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); } Static int zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) { struct zyd_pair pair[2]; pair[0].reg = htole16(ZYD_REG32_HI(reg)); pair[0].val = htole16(val >> 16); pair[1].reg = htole16(ZYD_REG32_LO(reg)); pair[1].val = htole16(val & 0xffff); return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); } Static int zyd_rfwrite(struct zyd_softc *sc, uint32_t val) { struct zyd_rf *rf = &sc->sc_rf; struct zyd_rfwrite req; uint16_t cr203; int i; (void)zyd_read16(sc, ZYD_CR203, &cr203); cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); req.code = htole16(2); req.width = htole16(rf->width); for (i = 0; i < rf->width; i++) { req.bit[i] = htole16(cr203); if (val & (1 << (rf->width - 1 - i))) req.bit[i] |= htole16(ZYD_RF_DATA); } return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); } Static void zyd_lock_phy(struct zyd_softc *sc) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); tmp &= ~ZYD_UNLOCK_PHY_REGS; (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); } Static void zyd_unlock_phy(struct zyd_softc *sc) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); tmp |= ZYD_UNLOCK_PHY_REGS; (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); } /* * RFMD RF methods. */ Static int zyd_rfmd_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; static const uint32_t rfini[] = ZYD_RFMD_RF; int error; size_t i; /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init RFMD radio */ for (i = 0; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; } Static int zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); return 0; } Static int zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_RFMD_CHANTABLE; (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); return 0; } /* * AL2230 RF methods. */ Static int zyd_al2230_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; static const uint32_t rfini[] = ZYD_AL2230_RF; int error; size_t i; /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } if (sc->rf_rev == ZYD_RF_AL2230S) { for (i = 0; i < __arraycount(phy2230s); i++) { error = zyd_write16(sc, phy2230s[i].reg, phy2230s[i].val); if (error != 0) return error; } } /* init AL2230 radio */ for (i = 0; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; } Static int zyd_al2230_init_b(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; static const uint32_t rfini[] = ZYD_AL2230_RF_B; int error; size_t i; /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init AL2230 radio */ for (i = 0; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; } Static int zyd_al2230_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); return 0; } Static int zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2, r3; } rfprog[] = ZYD_AL2230_CHANTABLE; (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); (void)zyd_write16(sc, ZYD_CR138, 0x28); (void)zyd_write16(sc, ZYD_CR203, 0x06); return 0; } /* * AL7230B RF methods. */ Static int zyd_al7230B_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; int error; size_t i; /* for AL7230B, PHY and RF need to be initialized in "phases" */ /* init RF-dependent PHY registers, part one */ for (i = 0; i < __arraycount(phyini_1); i++) { error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); if (error != 0) return error; } /* init AL7230B radio, part one */ for (i = 0; i < __arraycount(rfini_1); i++) { if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) return error; } /* init RF-dependent PHY registers, part two */ for (i = 0; i < __arraycount(phyini_2); i++) { error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); if (error != 0) return error; } /* init AL7230B radio, part two */ for (i = 0; i < __arraycount(rfini_2); i++) { if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) return error; } /* init RF-dependent PHY registers, part three */ for (i = 0; i < __arraycount(phyini_3); i++) { error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); if (error != 0) return error; } return 0; } Static int zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); return 0; } Static int zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_AL7230B_CHANTABLE; static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; int error; size_t i; (void)zyd_write16(sc, ZYD_CR240, 0x57); (void)zyd_write16(sc, ZYD_CR251, 0x2f); for (i = 0; i < __arraycount(rfsc); i++) { if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) return error; } (void)zyd_write16(sc, ZYD_CR128, 0x14); (void)zyd_write16(sc, ZYD_CR129, 0x12); (void)zyd_write16(sc, ZYD_CR130, 0x10); (void)zyd_write16(sc, ZYD_CR38, 0x38); (void)zyd_write16(sc, ZYD_CR136, 0xdf); (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); (void)zyd_rfwrite(sc, 0x3c9000); (void)zyd_write16(sc, ZYD_CR251, 0x3f); (void)zyd_write16(sc, ZYD_CR203, 0x06); (void)zyd_write16(sc, ZYD_CR240, 0x08); return 0; } /* * AL2210 RF methods. */ Static int zyd_al2210_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; static const uint32_t rfini[] = ZYD_AL2210_RF; uint32_t tmp; int error; size_t i; (void)zyd_write32(sc, ZYD_CR18, 2); /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init AL2210 radio */ for (i = 0; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_write32(sc, ZYD_CR18, 3); return 0; } Static int zyd_al2210_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } Static int zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; uint32_t tmp; (void)zyd_write32(sc, ZYD_CR18, 2); (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); (void)zyd_write16(sc, ZYD_CR47, 0x1e); /* actually set the channel */ (void)zyd_rfwrite(sc, rfprog[chan - 1]); (void)zyd_write32(sc, ZYD_CR18, 3); return 0; } /* * GCT RF methods. */ Static int zyd_gct_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; static const uint32_t rfini[] = ZYD_GCT_RF; int error; size_t i; /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init cgt radio */ for (i = 0; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; } Static int zyd_gct_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } Static int zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; (void)zyd_rfwrite(sc, 0x1c0000); (void)zyd_rfwrite(sc, rfprog[chan - 1]); (void)zyd_rfwrite(sc, 0x1c0008); return 0; } /* * Maxim RF methods. */ Static int zyd_maxim_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; static const uint32_t rfini[] = ZYD_MAXIM_RF; uint16_t tmp; int error; size_t i; /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim radio */ for (i = 0; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; } Static int zyd_maxim_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } Static int zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; static const uint32_t rfini[] = ZYD_MAXIM_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM_CHANTABLE; uint16_t tmp; int error; size_t i; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); /* init maxim radio - skipping the two first values */ for (i = 2; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; } /* * Maxim2 RF methods. */ Static int zyd_maxim2_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; uint16_t tmp; int error; size_t i; /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim2 radio */ for (i = 0; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; } Static int zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } Static int zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM2_CHANTABLE; uint16_t tmp; int error; size_t i; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < __arraycount(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); /* init maxim2 radio - skipping the two first values */ for (i = 2; i < __arraycount(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; } Static int zyd_rf_attach(struct zyd_softc *sc, uint8_t type) { struct zyd_rf *rf = &sc->sc_rf; rf->rf_sc = sc; switch (type) { case ZYD_RF_RFMD: rf->init = zyd_rfmd_init; rf->switch_radio = zyd_rfmd_switch_radio; rf->set_channel = zyd_rfmd_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2230: case ZYD_RF_AL2230S: if (sc->mac_rev == ZYD_ZD1211B) rf->init = zyd_al2230_init_b; else rf->init = zyd_al2230_init; rf->switch_radio = zyd_al2230_switch_radio; rf->set_channel = zyd_al2230_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL7230B: rf->init = zyd_al7230B_init; rf->switch_radio = zyd_al7230B_switch_radio; rf->set_channel = zyd_al7230B_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2210: rf->init = zyd_al2210_init; rf->switch_radio = zyd_al2210_switch_radio; rf->set_channel = zyd_al2210_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_GCT: rf->init = zyd_gct_init; rf->switch_radio = zyd_gct_switch_radio; rf->set_channel = zyd_gct_set_channel; rf->width = 21; /* 21-bit RF values */ break; case ZYD_RF_MAXIM_NEW: rf->init = zyd_maxim_init; rf->switch_radio = zyd_maxim_switch_radio; rf->set_channel = zyd_maxim_set_channel; rf->width = 18; /* 18-bit RF values */ break; case ZYD_RF_MAXIM_NEW2: rf->init = zyd_maxim2_init; rf->switch_radio = zyd_maxim2_switch_radio; rf->set_channel = zyd_maxim2_set_channel; rf->width = 18; /* 18-bit RF values */ break; default: printf("%s: sorry, radio \"%s\" is not supported yet\n", device_xname(sc->sc_dev), zyd_rf_name(type)); return EINVAL; } return 0; } Static const char * zyd_rf_name(uint8_t type) { static const char * const zyd_rfs[] = { "unknown", "unknown", "UW2451", "UCHIP", "AL2230", "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", "PHILIPS" }; return zyd_rfs[(type > 15) ? 0 : type]; } Static int zyd_hw_init(struct zyd_softc *sc) { struct zyd_rf *rf = &sc->sc_rf; const struct zyd_phy_pair *phyp; int error; /* specify that the plug and play is finished */ (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); /* retrieve firmware revision number */ (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); /* disable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); /* PHY init */ zyd_lock_phy(sc); phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; for (; phyp->reg != 0; phyp++) { if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) goto fail; } zyd_unlock_phy(sc); /* HMAC init */ zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); if (sc->mac_rev == ZYD_ZD1211) { zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); } else { zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); } zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); /* RF chip init */ zyd_lock_phy(sc); error = (*rf->init)(rf); zyd_unlock_phy(sc); if (error != 0) { printf("%s: radio initialization failed\n", device_xname(sc->sc_dev)); goto fail; } /* init beacon interval to 100ms */ if ((error = zyd_set_beacon_interval(sc, 100)) != 0) goto fail; fail: return error; } Static int zyd_read_eeprom(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; uint16_t val; int i; /* read MAC address */ (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); ic->ic_myaddr[0] = tmp & 0xff; ic->ic_myaddr[1] = tmp >> 8; ic->ic_myaddr[2] = tmp >> 16; ic->ic_myaddr[3] = tmp >> 24; (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); ic->ic_myaddr[4] = tmp & 0xff; ic->ic_myaddr[5] = tmp >> 8; (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); sc->rf_rev = tmp & 0x0f; sc->pa_rev = (tmp >> 16) & 0x0f; /* read regulatory domain (currently unused) */ (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); sc->regdomain = tmp >> 16; DPRINTF(("regulatory domain %x\n", sc->regdomain)); /* read Tx power calibration tables */ for (i = 0; i < 7; i++) { (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); sc->pwr_cal[i * 2] = val >> 8; sc->pwr_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); sc->pwr_int[i * 2] = val >> 8; sc->pwr_int[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); sc->ofdm36_cal[i * 2] = val >> 8; sc->ofdm36_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); sc->ofdm48_cal[i * 2] = val >> 8; sc->ofdm48_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); sc->ofdm54_cal[i * 2] = val >> 8; sc->ofdm54_cal[i * 2 + 1] = val & 0xff; } return 0; } Static int zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); tmp = addr[5] << 8 | addr[4]; (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); return 0; } Static int zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); tmp = addr[5] << 8 | addr[4]; (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); return 0; } Static int zyd_switch_radio(struct zyd_softc *sc, int on) { struct zyd_rf *rf = &sc->sc_rf; int error; zyd_lock_phy(sc); error = (*rf->switch_radio)(rf, on); zyd_unlock_phy(sc); return error; } Static void zyd_set_led(struct zyd_softc *sc, int which, int on) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); tmp &= ~which; if (on) tmp |= which; (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); } Static int zyd_set_rxfilter(struct zyd_softc *sc) { uint32_t rxfilter; switch (sc->sc_ic.ic_opmode) { case IEEE80211_M_STA: rxfilter = ZYD_FILTER_BSS; break; case IEEE80211_M_IBSS: case IEEE80211_M_HOSTAP: rxfilter = ZYD_FILTER_HOSTAP; break; case IEEE80211_M_MONITOR: rxfilter = ZYD_FILTER_MONITOR; break; default: /* should not get there */ return EINVAL; } return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); } Static void zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; struct zyd_rf *rf = &sc->sc_rf; u_int chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; zyd_lock_phy(sc); (*rf->set_channel)(rf, chan); /* update Tx power */ (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); if (sc->mac_rev == ZYD_ZD1211B) { (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); (void)zyd_write32(sc, ZYD_CR69, 0x28); (void)zyd_write32(sc, ZYD_CR69, 0x2a); } zyd_unlock_phy(sc); } Static int zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) { /* XXX this is probably broken.. */ (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); return 0; } Static uint8_t zyd_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } Static void zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status) { struct zyd_softc *sc = (struct zyd_softc *)priv; struct zyd_cmd *cmd; uint32_t datalen; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) { usbd_clear_endpoint_stall_async( sc->zyd_ep[ZYD_ENDPT_IIN]); } return; } cmd = (struct zyd_cmd *)sc->ibuf; if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { struct zyd_notif_retry *retry = (struct zyd_notif_retry *)cmd->data; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct ieee80211_node *ni; DPRINTF(("retry intr: rate=%#x addr=%s count=%d (%#x)\n", le16toh(retry->rate), ether_sprintf(retry->macaddr), le16toh(retry->count) & 0xff, le16toh(retry->count))); /* * Find the node to which the packet was sent and update its * retry statistics. In BSS mode, this node is the AP we're * associated to so no lookup is actually needed. */ if (ic->ic_opmode != IEEE80211_M_STA) { ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); if (ni == NULL) return; /* just ignore */ } else ni = ic->ic_bss; ((struct zyd_node *)ni)->amn.amn_retrycnt++; if (le16toh(retry->count) & 0x100) if_statinc(ifp, if_oerrors); } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { struct rq *rqp; if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) return; /* HMAC interrupt */ usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); datalen -= sizeof(cmd->code); datalen -= 2; /* XXX: padding? */ mutex_enter(&sc->sc_lock); SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { int i; if (sizeof(struct zyd_pair) * rqp->len != datalen) continue; for (i = 0; i < rqp->len; i++) { if (*(((const uint16_t *)rqp->idata) + i) != (((struct zyd_pair *)cmd->data) + i)->reg) break; } if (i != rqp->len) continue; /* copy answer into caller-supplied buffer */ memcpy(rqp->odata, cmd->data, sizeof(struct zyd_pair) * rqp->len); cv_signal(&sc->sc_cmdcv); mutex_exit(&sc->sc_lock); return; } mutex_exit(&sc->sc_lock); return; /* unexpected IORD notification */ } else { printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), le16toh(cmd->code)); } } Static void zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct ieee80211_node *ni; struct ieee80211_frame *wh; const struct zyd_plcphdr *plcp; const struct zyd_rx_stat *stat; struct mbuf *m; int rlen, s; if (len < ZYD_MIN_FRAGSZ) { printf("%s: frame too short (length=%d)\n", device_xname(sc->sc_dev), len); if_statinc(ifp, if_ierrors); return; } plcp = (const struct zyd_plcphdr *)buf; stat = (const struct zyd_rx_stat *) (buf + len - sizeof(struct zyd_rx_stat)); if (stat->flags & ZYD_RX_ERROR) { DPRINTF(("%s: RX status indicated error (%x)\n", device_xname(sc->sc_dev), stat->flags)); if_statinc(ifp, if_ierrors); return; } /* compute actual frame length */ rlen = len - sizeof(struct zyd_plcphdr) - sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; /* allocate a mbuf to store the frame */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { printf("%s: could not allocate rx mbuf\n", device_xname(sc->sc_dev)); if_statinc(ifp, if_ierrors); return; } if (rlen > MHLEN) { MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", device_xname(sc->sc_dev)); m_freem(m); if_statinc(ifp, if_ierrors); return; } } m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = rlen; memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen); s = splnet(); if (sc->sc_drvbpf != NULL) { struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; static const uint8_t rates[] = { /* reverse function of zyd_plcp_signal() */ 2, 4, 11, 22, 0, 0, 0, 0, 96, 48, 24, 12, 108, 72, 36, 18 }; tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); tap->wr_rssi = stat->rssi; tap->wr_rate = rates[plcp->signal & 0xf]; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); } wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); ieee80211_input(ic, m, ni, stat->rssi, 0); /* node is no longer needed */ ieee80211_free_node(ni); splx(s); } Static void zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status) { struct zyd_rx_data *data = priv; struct zyd_softc *sc = data->sc; struct ifnet *ifp = &sc->sc_if; const struct zyd_rx_desc *desc; int len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < ZYD_MIN_RXBUFSZ) { printf("%s: xfer too short (length=%d)\n", device_xname(sc->sc_dev), len); if_statinc(ifp, if_ierrors); goto skip; } desc = (const struct zyd_rx_desc *) (data->buf + len - sizeof(struct zyd_rx_desc)); if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { const uint8_t *p = data->buf, *end = p + len; int i; DPRINTFN(3, ("received multi-frame transfer\n")); for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { const uint16_t len16 = UGETW(desc->len[i]); if (len16 == 0 || p + len16 > end) break; zyd_rx_data(sc, p, len16); /* next frame is aligned on a 32-bit boundary */ p += (len16 + 3) & ~3; } } else { DPRINTFN(3, ("received single-frame transfer\n")); zyd_rx_data(sc, data->buf, len); } skip: /* setup a new transfer */ usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); (void)usbd_transfer(xfer); } Static int zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct zyd_tx_desc *desc; struct zyd_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; int xferlen, totlen, rate; uint16_t pktlen; usbd_status error; data = &sc->tx_data[0]; desc = (struct zyd_tx_desc *)data->buf; rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } } data->ni = ni; wh = mtod(m0, struct ieee80211_frame *); xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* fill Tx descriptor */ desc->len = htole16(totlen); desc->flags = ZYD_TX_FLAG_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (totlen > ic->ic_rtsthreshold) { desc->flags |= ZYD_TX_FLAG_RTS; } else if (ZYD_RATE_IS_OFDM(rate) && (ic->ic_flags & IEEE80211_F_USEPROT)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) desc->flags |= ZYD_TX_FLAG_RTS; } } else desc->flags |= ZYD_TX_FLAG_MULTICAST; if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); desc->phy = zyd_plcp_signal(rate); if (ZYD_RATE_IS_OFDM(rate)) { desc->phy |= ZYD_TX_PHY_OFDM; if (ic->ic_curmode == IEEE80211_MODE_11A) desc->phy |= ZYD_TX_PHY_5GHZ; } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->phy |= ZYD_TX_PHY_SHPREAMBLE; /* actual transmit length (XXX why +10?) */ pktlen = sizeof(struct zyd_tx_desc) + 10; if (sc->mac_rev == ZYD_ZD1211) pktlen += totlen; desc->pktlen = htole16(pktlen); desc->plcp_length = (16 * totlen + rate - 1) / rate; desc->plcp_service = 0; if (rate == 22) { const int remainder = (16 * totlen) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= ZYD_PLCP_LENGEXT; } if (sc->sc_drvbpf != NULL) { struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); } m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + sizeof(struct zyd_tx_desc)); DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); m_freem(m0); /* mbuf no longer needed */ usbd_setup_xfer(data->xfer, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { if_statinc(ifp, if_oerrors); return EIO; } sc->tx_queued++; return 0; } Static void zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status) { struct zyd_tx_data *data = priv; struct zyd_softc *sc = data->sc; struct ifnet *ifp = &sc->sc_if; int s; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; printf("%s: could not transmit buffer: %s\n", device_xname(sc->sc_dev), usbd_errstr(status)); if (status == USBD_STALLED) { usbd_clear_endpoint_stall_async( sc->zyd_ep[ZYD_ENDPT_BOUT]); } if_statinc(ifp, if_oerrors); return; } s = splnet(); /* update rate control statistics */ ((struct zyd_node *)data->ni)->amn.amn_txcnt++; ieee80211_free_node(data->ni); data->ni = NULL; sc->tx_queued--; if_statinc(ifp, if_opackets); sc->tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; zyd_start(ifp); splx(s); } Static int zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct zyd_tx_desc *desc; struct zyd_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; int xferlen, totlen, rate; uint16_t pktlen; usbd_status error; wh = mtod(m0, struct ieee80211_frame *); if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; else rate = ni->ni_rates.rs_rates[ni->ni_txrate]; rate &= IEEE80211_RATE_VAL; if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } data = &sc->tx_data[0]; desc = (struct zyd_tx_desc *)data->buf; data->ni = ni; xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* fill Tx descriptor */ desc->len = htole16(totlen); desc->flags = ZYD_TX_FLAG_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (totlen > ic->ic_rtsthreshold) { desc->flags |= ZYD_TX_FLAG_RTS; } else if (ZYD_RATE_IS_OFDM(rate) && (ic->ic_flags & IEEE80211_F_USEPROT)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) desc->flags |= ZYD_TX_FLAG_RTS; } } else desc->flags |= ZYD_TX_FLAG_MULTICAST; if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); desc->phy = zyd_plcp_signal(rate); if (ZYD_RATE_IS_OFDM(rate)) { desc->phy |= ZYD_TX_PHY_OFDM; if (ic->ic_curmode == IEEE80211_MODE_11A) desc->phy |= ZYD_TX_PHY_5GHZ; } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->phy |= ZYD_TX_PHY_SHPREAMBLE; /* actual transmit length (XXX why +10?) */ pktlen = sizeof(struct zyd_tx_desc) + 10; if (sc->mac_rev == ZYD_ZD1211) pktlen += totlen; desc->pktlen = htole16(pktlen); desc->plcp_length = (16 * totlen + rate - 1) / rate; desc->plcp_service = 0; if (rate == 22) { const int remainder = (16 * totlen) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= ZYD_PLCP_LENGEXT; } if (sc->sc_drvbpf != NULL) { struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); } m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + sizeof(struct zyd_tx_desc)); DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); m_freem(m0); /* mbuf no longer needed */ usbd_setup_xfer(data->xfer, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { if_statinc(ifp, if_oerrors); return EIO; } sc->tx_queued++; return 0; } Static void zyd_start(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ether_header *eh; struct ieee80211_node *ni; struct mbuf *m0; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->tx_queued >= ZYD_TX_LIST_CNT) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = M_GETCTX(m0, struct ieee80211_node *); M_CLEARCTX(m0); bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); if (zyd_tx_mgt(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->tx_queued >= ZYD_TX_LIST_CNT) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0->m_len < sizeof(struct ether_header) && !(m0 = m_pullup(m0, sizeof(struct ether_header)))) continue; eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); continue; } bpf_mtap(ifp, m0, BPF_D_OUT); if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { ieee80211_free_node(ni); if_statinc(ifp, if_oerrors); continue; } bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); if (zyd_tx_data(sc, m0, ni) != 0) { ieee80211_free_node(ni); if_statinc(ifp, if_oerrors); break; } } sc->tx_timer = 5; ifp->if_timer = 1; } } Static void zyd_watchdog(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ifp->if_timer = 0; if (sc->tx_timer > 0) { if (--sc->tx_timer == 0) { printf("%s: device timeout\n", device_xname(sc->sc_dev)); /* zyd_init(ifp); XXX needs a process context ? */ if_statinc(ifp, if_oerrors); return; } ifp->if_timer = 1; } ieee80211_watchdog(ic); } Static int zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; /* XXX re-use ether_ioctl() */ switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { case IFF_UP: zyd_init(ifp); break; case IFF_RUNNING: zyd_stop(ifp, 1); break; default: break; } break; default: error = ieee80211_ioctl(ic, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == (IFF_RUNNING | IFF_UP)) zyd_init(ifp); error = 0; } splx(s); return error; } Static int zyd_init(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int i, error; zyd_stop(ifp, 0); IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); error = zyd_set_macaddr(sc, ic->ic_myaddr); if (error != 0) return error; /* we'll do software WEP decryption for now */ DPRINTF(("setting encryption type\n")); error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); if (error != 0) return error; /* promiscuous mode */ (void)zyd_write32(sc, ZYD_MAC_SNIFFER, (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); (void)zyd_set_rxfilter(sc); /* switch radio transmitter ON */ (void)zyd_switch_radio(sc, 1); /* set basic rates */ if (ic->ic_curmode == IEEE80211_MODE_11B) (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); else if (ic->ic_curmode == IEEE80211_MODE_11A) (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); else /* assumes 802.11b/g */ (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); /* set mandatory rates */ if (ic->ic_curmode == IEEE80211_MODE_11B) (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); else if (ic->ic_curmode == IEEE80211_MODE_11A) (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); else /* assumes 802.11b/g */ (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); /* set default BSS channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; zyd_set_chan(sc, ic->ic_bss->ni_chan); /* enable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); /* * Allocate Tx and Rx xfer queues. */ if ((error = zyd_alloc_tx_list(sc)) != 0) { printf("%s: could not allocate Tx list\n", device_xname(sc->sc_dev)); goto fail; } if ((error = zyd_alloc_rx_list(sc)) != 0) { printf("%s: could not allocate Rx list\n", device_xname(sc->sc_dev)); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { printf("%s: could not queue Rx transfer\n", device_xname(sc->sc_dev)); goto fail; } } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return 0; fail: zyd_stop(ifp, 1); return error; } Static void zyd_stop(struct ifnet *ifp, int disable) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ sc->tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* switch radio transmitter OFF */ (void)zyd_switch_radio(sc, 0); /* disable Rx */ (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); /* disable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); zyd_free_rx_list(sc); zyd_free_tx_list(sc); } Static int zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) { usb_device_request_t req; uint16_t addr; uint8_t stat; DPRINTF(("firmware size=%zu\n", size)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADREQ; USETW(req.wIndex, 0); addr = ZYD_FIRMWARE_START_ADDR; while (size > 0) { #if 0 const int mlen = uimin(size, 4096); #else /* * XXXX: When the transfer size is 4096 bytes, it is not * likely to be able to transfer it. * The cause is port or machine or chip? */ const int mlen = uimin(size, 64); #endif DPRINTF(("loading firmware block: len=%d, addr=%#x\n", mlen, addr)); USETW(req.wValue, addr); USETW(req.wLength, mlen); if (usbd_do_request(sc->sc_udev, &req, fw) != 0) return EIO; addr += mlen / 2; fw += mlen; size -= mlen; } /* check whether the upload succeeded */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADSTS; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, sizeof(stat)); if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) return EIO; return (stat & 0x80) ? EIO : 0; } Static void zyd_iter_func(void *arg, struct ieee80211_node *ni) { struct zyd_softc *sc = arg; struct zyd_node *zn = (struct zyd_node *)ni; ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); } Static void zyd_amrr_timeout(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; s = splnet(); if (ic->ic_opmode == IEEE80211_M_STA) zyd_iter_func(sc, ic->ic_bss); else ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); splx(s); callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); } Static void zyd_newassoc(struct ieee80211_node *ni, int isnew) { struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; int i; ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; } static int zyd_activate(device_t self, enum devact act) { struct zyd_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: if_deactivate(&sc->sc_if); return 0; default: return EOPNOTSUPP; } }