/* $NetBSD: if_cue.c,v 1.108 2022/08/20 14:09:10 riastradh Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/usb/if_cue.c,v 1.4 2000/01/16 22:45:06 wpaul Exp $ */ /* * CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate * adapters and others. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The * RX filter uses a 512-bit multicast hash table, single perfect entry * for the station address, and promiscuous mode. Unlike the ADMtek * and KLSI chips, the CATC ASIC supports read and write combining * mode where multiple packets can be transferred using a single bulk * transaction, which helps performance a great deal. */ /* * Ported to NetBSD and somewhat rewritten by Lennart Augustsson. */ #include __KERNEL_RCSID(0, "$NetBSD: if_cue.c,v 1.108 2022/08/20 14:09:10 riastradh Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_usb.h" #endif #include #include #include #ifdef INET #include #include #endif #ifdef CUE_DEBUG #define DPRINTF(x) if (cuedebug) printf x #define DPRINTFN(n, x) if (cuedebug >= (n)) printf x int cuedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif #define CUE_BUFSZ 1536 #define CUE_MIN_FRAMELEN 60 #define CUE_RX_FRAMES 1 #define CUE_TX_FRAMES 1 #define CUE_CONFIG_NO 1 #define CUE_IFACE_IDX 0 #define CUE_RX_LIST_CNT 1 #define CUE_TX_LIST_CNT 1 struct cue_type { uint16_t cue_vid; uint16_t cue_did; }; struct cue_softc; struct cue_chain { struct cue_softc *cue_sc; struct usbd_xfer *cue_xfer; char *cue_buf; struct mbuf *cue_mbuf; int cue_idx; }; struct cue_cdata { struct cue_chain cue_tx_chain[CUE_TX_LIST_CNT]; struct cue_chain cue_rx_chain[CUE_RX_LIST_CNT]; int cue_tx_prod; int cue_tx_cnt; }; struct cue_softc { struct usbnet cue_un; uint8_t cue_mctab[CUE_MCAST_TABLE_LEN]; }; /* * Various supported device vendors/products. */ static const struct usb_devno cue_devs[] = { { USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE }, { USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2 }, { USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK }, /* Belkin F5U111 adapter covered by NETMATE entry */ }; #define cue_lookup(v, p) (usb_lookup(cue_devs, v, p)) static int cue_match(device_t, cfdata_t, void *); static void cue_attach(device_t, device_t, void *); CFATTACH_DECL_NEW(cue, sizeof(struct cue_softc), cue_match, cue_attach, usbnet_detach, usbnet_activate); static unsigned cue_uno_tx_prepare(struct usbnet *, struct mbuf *, struct usbnet_chain *); static void cue_uno_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t); static void cue_uno_mcast(struct ifnet *); static void cue_uno_stop(struct ifnet *, int); static int cue_uno_init(struct ifnet *); static void cue_uno_tick(struct usbnet *); static const struct usbnet_ops cue_ops = { .uno_stop = cue_uno_stop, .uno_mcast = cue_uno_mcast, .uno_tx_prepare = cue_uno_tx_prepare, .uno_rx_loop = cue_uno_rx_loop, .uno_init = cue_uno_init, .uno_tick = cue_uno_tick, }; #ifdef CUE_DEBUG static int cue_csr_read_1(struct usbnet *un, int reg) { usb_device_request_t req; usbd_status err; uint8_t val = 0; if (usbnet_isdying(un)) return 0; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request(un->un_udev, &req, &val); if (err) { DPRINTF(("%s: cue_csr_read_1: reg=%#x err=%s\n", device_xname(un->un_dev), reg, usbd_errstr(err))); return 0; } DPRINTFN(10,("%s: cue_csr_read_1 reg=%#x val=%#x\n", device_xname(un->un_dev), reg, val)); return val; } #endif static int cue_csr_read_2(struct usbnet *un, int reg) { usb_device_request_t req; usbd_status err; uWord val; if (usbnet_isdying(un)) return 0; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request(un->un_udev, &req, &val); DPRINTFN(10,("%s: cue_csr_read_2 reg=%#x val=%#x\n", device_xname(un->un_dev), reg, UGETW(val))); if (err) { DPRINTF(("%s: cue_csr_read_2: reg=%#x err=%s\n", device_xname(un->un_dev), reg, usbd_errstr(err))); return 0; } return UGETW(val); } static int cue_csr_write_1(struct usbnet *un, int reg, int val) { usb_device_request_t req; usbd_status err; if (usbnet_isdying(un)) return 0; DPRINTFN(10,("%s: cue_csr_write_1 reg=%#x val=%#x\n", device_xname(un->un_dev), reg, val)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); err = usbd_do_request(un->un_udev, &req, NULL); if (err) { DPRINTF(("%s: cue_csr_write_1: reg=%#x err=%s\n", device_xname(un->un_dev), reg, usbd_errstr(err))); return -1; } DPRINTFN(20,("%s: cue_csr_write_1, after reg=%#x val=%#x\n", device_xname(un->un_dev), reg, cue_csr_read_1(un, reg))); return 0; } #if 0 static int cue_csr_write_2(struct usbnet *un, int reg, int aval) { usb_device_request_t req; usbd_status err; uWord val; int s; if (usbnet_isdying(un)) return 0; DPRINTFN(10,("%s: cue_csr_write_2 reg=%#x val=%#x\n", device_xname(un->un_dev), reg, aval)); USETW(val, aval); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); err = usbd_do_request(un->un_udev, &req, NULL); if (err) { DPRINTF(("%s: cue_csr_write_2: reg=%#x err=%s\n", device_xname(un->un_dev), reg, usbd_errstr(err))); return -1; } return 0; } #endif static int cue_mem(struct usbnet *un, int cmd, int addr, void *buf, int len) { usb_device_request_t req; usbd_status err; DPRINTFN(10,("%s: cue_mem cmd=%#x addr=%#x len=%d\n", device_xname(un->un_dev), cmd, addr, len)); if (cmd == CUE_CMD_READSRAM) req.bmRequestType = UT_READ_VENDOR_DEVICE; else req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = cmd; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); err = usbd_do_request(un->un_udev, &req, buf); if (err) { DPRINTF(("%s: cue_csr_mem: addr=%#x err=%s\n", device_xname(un->un_dev), addr, usbd_errstr(err))); return -1; } return 0; } static int cue_getmac(struct usbnet *un) { usb_device_request_t req; usbd_status err; DPRINTFN(10,("%s: cue_getmac\n", device_xname(un->un_dev))); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_GET_MACADDR; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, ETHER_ADDR_LEN); err = usbd_do_request(un->un_udev, &req, un->un_eaddr); if (err) { printf("%s: read MAC address failed\n", device_xname(un->un_dev)); return -1; } return 0; } #define CUE_POLY 0xEDB88320 #define CUE_BITS 9 static uint32_t cue_crc(const char *addr) { uint32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CUE_POLY : 0); } return crc & ((1 << CUE_BITS) - 1); } static void cue_uno_mcast(struct ifnet *ifp) { struct usbnet *un = ifp->if_softc; struct cue_softc *sc = usbnet_softc(un); struct ethercom *ec = usbnet_ec(un); struct ether_multi *enm; struct ether_multistep step; uint32_t h, i; DPRINTFN(2,("%s: cue_setiff promisc=%d\n", device_xname(un->un_dev), usbnet_ispromisc(un))); if (usbnet_ispromisc(un)) { ETHER_LOCK(ec); allmulti: ec->ec_flags |= ETHER_F_ALLMULTI; ETHER_UNLOCK(ec); for (i = 0; i < CUE_MCAST_TABLE_LEN; i++) sc->cue_mctab[i] = 0xFF; cue_mem(un, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &sc->cue_mctab, CUE_MCAST_TABLE_LEN); return; } /* first, zot all the existing hash bits */ for (i = 0; i < CUE_MCAST_TABLE_LEN; i++) sc->cue_mctab[i] = 0; /* now program new ones */ ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { goto allmulti; } h = cue_crc(enm->enm_addrlo); sc->cue_mctab[h >> 3] |= 1 << (h & 0x7); ETHER_NEXT_MULTI(step, enm); } ec->ec_flags &= ~ETHER_F_ALLMULTI; ETHER_UNLOCK(ec); /* * Also include the broadcast address in the filter * so we can receive broadcast frames. */ h = cue_crc(etherbroadcastaddr); sc->cue_mctab[h >> 3] |= 1 << (h & 0x7); cue_mem(un, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &sc->cue_mctab, CUE_MCAST_TABLE_LEN); } static void cue_reset(struct usbnet *un) { usb_device_request_t req; usbd_status err; DPRINTFN(2,("%s: cue_reset\n", device_xname(un->un_dev))); if (usbnet_isdying(un)) return; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_RESET; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); err = usbd_do_request(un->un_udev, &req, NULL); if (err) printf("%s: reset failed\n", device_xname(un->un_dev)); /* Wait a little while for the chip to get its brains in order. */ usbd_delay_ms(un->un_udev, 1); } /* * Probe for a CATC chip. */ static int cue_match(device_t parent, cfdata_t match, void *aux) { struct usb_attach_arg *uaa = aux; return cue_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static void cue_attach(device_t parent, device_t self, void *aux) { struct cue_softc *sc = device_private(self); struct usbnet * const un = &sc->cue_un; struct usb_attach_arg *uaa = aux; char *devinfop; struct usbd_device * dev = uaa->uaa_device; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; KASSERT((void *)sc == un); DPRINTFN(5,(" : cue_attach: sc=%p, dev=%p", sc, dev)); aprint_naive("\n"); aprint_normal("\n"); devinfop = usbd_devinfo_alloc(dev, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); err = usbd_set_config_no(dev, CUE_CONFIG_NO, 1); if (err) { aprint_error_dev(self, "failed to set configuration" ", err=%s\n", usbd_errstr(err)); return; } un->un_dev = self; un->un_udev = dev; un->un_sc = sc; un->un_ops = &cue_ops; un->un_rx_xfer_flags = USBD_SHORT_XFER_OK; un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER; un->un_rx_list_cnt = CUE_RX_LIST_CNT; un->un_tx_list_cnt = CUE_TX_LIST_CNT; un->un_rx_bufsz = CUE_BUFSZ; un->un_tx_bufsz = CUE_BUFSZ; err = usbd_device2interface_handle(dev, CUE_IFACE_IDX, &un->un_iface); if (err) { aprint_error_dev(self, "getting interface handle failed\n"); return; } id = usbd_get_interface_descriptor(un->un_iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(un->un_iface, i); if (ed == NULL) { aprint_error_dev(self, "couldn't get ep %d\n", i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress; } } /* First level attach. */ usbnet_attach(un); #if 0 /* Reset the adapter. */ cue_reset(un); #endif /* * Get station address. */ cue_getmac(un); usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST, 0, NULL); } static void cue_uno_tick(struct usbnet *un) { struct ifnet *ifp = usbnet_ifp(un); net_stat_ref_t nsr = IF_STAT_GETREF(ifp); if (cue_csr_read_2(un, CUE_RX_FRAMEERR)) if_statinc_ref(nsr, if_ierrors); if_statadd_ref(nsr, if_collisions, cue_csr_read_2(un, CUE_TX_SINGLECOLL)); if_statadd_ref(nsr, if_collisions, cue_csr_read_2(un, CUE_TX_MULTICOLL)); if_statadd_ref(nsr, if_collisions, cue_csr_read_2(un, CUE_TX_EXCESSCOLL)); IF_STAT_PUTREF(ifp); } static void cue_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len) { struct ifnet *ifp = usbnet_ifp(un); uint8_t *buf = c->unc_buf; uint16_t len; DPRINTFN(5,("%s: %s: total_len=%d len=%d\n", device_xname(un->un_dev), __func__, total_len, le16dec(buf))); len = UGETW(buf); if (total_len < 2 || len > total_len - 2 || len < sizeof(struct ether_header)) { if_statinc(ifp, if_ierrors); return; } /* No errors; receive the packet. */ usbnet_enqueue(un, buf + 2, len, 0, 0, 0); } static unsigned cue_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c) { unsigned total_len; DPRINTFN(5,("%s: %s: mbuf len=%d\n", device_xname(un->un_dev), __func__, m->m_pkthdr.len)); if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - 2) return 0; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + 2); total_len = m->m_pkthdr.len + 2; /* The first two bytes are the frame length */ c->unc_buf[0] = (uint8_t)m->m_pkthdr.len; c->unc_buf[1] = (uint8_t)(m->m_pkthdr.len >> 8); return total_len; } static int cue_uno_init(struct ifnet *ifp) { struct usbnet * const un = ifp->if_softc; int i, ctl; const u_char *eaddr; DPRINTFN(10,("%s: %s: enter\n", device_xname(un->un_dev),__func__)); /* Cancel pending I/O */ cue_uno_stop(ifp, 1); /* Reset the interface. */ #if 1 cue_reset(un); #endif /* Set advanced operation modes. */ cue_csr_write_1(un, CUE_ADVANCED_OPMODES, CUE_AOP_EMBED_RXLEN | 0x03); /* 1 wait state */ eaddr = CLLADDR(ifp->if_sadl); /* Set MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) cue_csr_write_1(un, CUE_PAR0 - i, eaddr[i]); /* Enable RX logic. */ ctl = CUE_ETHCTL_RX_ON | CUE_ETHCTL_MCAST_ON; if (usbnet_ispromisc(un)) ctl |= CUE_ETHCTL_PROMISC; cue_csr_write_1(un, CUE_ETHCTL, ctl); /* * Set the number of RX and TX buffers that we want * to reserve inside the ASIC. */ cue_csr_write_1(un, CUE_RX_BUFPKTS, CUE_RX_FRAMES); cue_csr_write_1(un, CUE_TX_BUFPKTS, CUE_TX_FRAMES); /* Set advanced operation modes. */ cue_csr_write_1(un, CUE_ADVANCED_OPMODES, CUE_AOP_EMBED_RXLEN | 0x01); /* 1 wait state */ /* Program the LED operation. */ cue_csr_write_1(un, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK); return 0; } /* Stop and reset the adapter. */ static void cue_uno_stop(struct ifnet *ifp, int disable) { struct usbnet * const un = ifp->if_softc; DPRINTFN(10,("%s: %s: enter\n", device_xname(un->un_dev), __func__)); cue_csr_write_1(un, CUE_ETHCTL, 0); cue_reset(un); } #ifdef _MODULE #include "ioconf.c" #endif USBNET_MODULE(cue)