/* $NetBSD: if_dse.c,v 1.5 2024/01/01 22:29:48 gutteridge Exp $ */ /* * Driver for DaynaPORT SCSI/Link SCSI-Ethernet * * Written by Hiroshi Noguchi * * Modified by Matt Sandstrom for NetBSD 1.5.3 * * This driver is written based on "if_se.c". */ /* * Copyright (c) 1997 Ian W. Dall * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Ian W. Dall. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "opt_inet.h" #include "opt_atalk.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #ifdef NETATALK #include #endif #include /* * debug flag */ #if 0 #define DSE_DEBUG #endif #define DSE_TIMEOUT 100000 #define DSE_OUTSTANDING 4 #define DSE_RETRIES 4 #define DSE_MINSIZE 60 #define DSE_HEADER_TX 4 #define DSE_TAIL_TX 4 #define DSE_EXTRAS_TX (DSE_HEADER_TX + DSE_TAIL_TX) #define DSE_HEADER_RX 6 #define DSE_TAIL_RX 0 #define DSE_EXTRAS_RX (DSE_HEADER_RX + DSE_TAIL_RX) #define MAX_BYTES_RX (ETHERMTU + sizeof(struct ether_header) + ETHER_CRC_LEN) /* 10 full length packets appears to be the max ever returned. 16k is OK */ #define RBUF_LEN (16 * 1024) /* * Tuning parameters: * We will attempt to adapt to polling fast enough to get RDATA_GOAL packets * per read */ #define RDATA_MAX 10 /* maximum of returned packets (guessed) */ #define RDATA_GOAL 8 /* * maximum of available multicast address entries (guessed) */ #define DSE_MCAST_MAX 10 /* dse_poll and dse_poll0 are the normal polling rate and the minimum * polling rate respectively. dse_poll0 should be chosen so that at * maximum ethernet speed, we will read nearly RDATA_MAX packets. dse_poll * should be chosen for reasonable maximum latency. * In practice, if we are being saturated with min length packets, we * can't poll fast enough. Polling with zero delay actually * worsens performance. dse_poll0 is enforced to be always at least 1 */ #if MAC68K_DEBUG #define DSE_POLL 50 /* default in milliseconds */ #define DSE_POLL0 30 /* default in milliseconds */ #else #define DSE_POLL 80 /* default in milliseconds */ #define DSE_POLL0 40 /* default in milliseconds */ #endif int dse_poll = 0; /* Delay in ticks set at attach time */ int dse_poll0 = 0; int dse_max_received = 0; /* Instrumentation */ /*========================================== data type defs ==========================================*/ typedef struct scsipi_inquiry_data dayna_ether_inquiry_data; typedef struct { uint8_t opcode[2]; uint8_t byte3; uint8_t length[2]; uint8_t byte6; } scsi_dayna_ether_generic; #define DAYNA_CMD_SEND 0x0A /* same as generic "Write" */ #define DAYNA_CMD_RECV 0x08 /* same as generic "Read" */ #define DAYNA_CMD_GET_ADDR 0x09 /* ???: read MAC address ? */ #define REQ_LEN_GET_ADDR 0x12 #define DAYNA_CMD_SET_MULTI 0x0D /* set multicast address */ #define DAYNA_CMD_VENDOR1 0x0E /* ???: initialize signal ? */ #define IS_SEND(generic) ((generic)->opcode == DAYNA_CMD_SEND) #define IS_RECV(generic) ((generic)->opcode == DAYNA_CMD_RECV) struct dse_softc { device_t sc_dev; struct ethercom sc_ethercom; /* Ethernet common part */ struct scsipi_periph *sc_periph;/* contains our targ, lun, etc. */ struct callout sc_recv_ch; struct kmutex sc_iflock; struct if_percpuq *sc_ipq; struct workqueue *sc_recv_wq, *sc_send_wq; struct work sc_recv_work, sc_send_work; int sc_recv_work_pending, sc_send_work_pending; char *sc_tbuf; char *sc_rbuf; int sc_debug; int sc_flags; int sc_last_timeout; int sc_enabled; int sc_attach_state; }; /* bit defs of "sc_flags" */ #define DSE_NEED_RECV 0x1 static int dsematch(device_t, cfdata_t, void *); static void dseattach(device_t, device_t, void *); static int dsedetach(device_t, int); static void dse_ifstart(struct ifnet *); static void dse_send_worker(struct work *wk, void *cookie); static void dsedone(struct scsipi_xfer *, int); static int dse_ioctl(struct ifnet *, u_long, void *); static void dsewatchdog(struct ifnet *); static void dse_recv_callout(void *); static void dse_recv_worker(struct work *wk, void *cookie); static void dse_recv(struct dse_softc *); static struct mbuf* dse_get(struct dse_softc *, uint8_t *, int); static int dse_read(struct dse_softc *, uint8_t *, int); static int dse_init_adaptor(struct dse_softc *); static int dse_get_addr(struct dse_softc *, uint8_t *); static int dse_set_multi(struct dse_softc *); static int dse_reset(struct dse_softc *); #if 0 /* 07/16/2000 comment-out */ static int dse_set_mode(struct dse_softc *, int, int); #endif static int dse_init(struct dse_softc *); static void dse_stop(struct dse_softc *); #if 0 static __inline uint16_t ether_cmp(void *, void *); #endif static inline int dse_scsipi_cmd(struct scsipi_periph *periph, struct scsipi_generic *scsipi_cmd, int cmdlen, u_char *data_addr, int datalen, int retries, int timeout, struct buf *bp, int flags); int dse_enable(struct dse_softc *); void dse_disable(struct dse_softc *); CFATTACH_DECL_NEW(dse, sizeof(struct dse_softc), dsematch, dseattach, dsedetach, NULL); extern struct cfdriver dse_cd; dev_type_open(dseopen); dev_type_close(dseclose); dev_type_ioctl(dseioctl); const struct cdevsw dse_cdevsw = { .d_open = dseopen, .d_close = dseclose, .d_read = noread, .d_write = nowrite, .d_ioctl = dseioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_OTHER | D_MPSAFE }; const struct scsipi_periphsw dse_switch = { NULL, /* Use default error handler */ NULL, /* have no queue */ NULL, /* have no async handler */ dsedone, /* deal with stats at interrupt time */ }; struct scsipi_inquiry_pattern dse_patterns[] = { { T_PROCESSOR, T_FIXED, "Dayna", "SCSI/Link", "" }, }; /*==================================================== definitions for SCSI commands ====================================================*/ /* * command templates */ /* unknown commands */ /* Vendor #1 */ static const scsi_dayna_ether_generic sonic_ether_vendor1 = { { DAYNA_CMD_VENDOR1, 0x00 }, 0x00, { 0x00, 0x00 }, 0x80 }; #if 0 /* * Compare two Ether/802 addresses for equality, inlined and * unrolled for speed. * Note: use this like memcmp() */ static __inline uint16_t ether_cmp(void *one, void *two) { uint16_t* a; uint16_t* b; uint16_t diff; a = (uint16_t *) one; b = (uint16_t *) two; diff = (a[0] - b[0]) | (a[1] - b[1]) | (a[2] - b[2]); return (diff); } #define ETHER_CMP ether_cmp #endif /* * check to match with SCSI inquiry information */ static int dsematch(device_t parent, cfdata_t match, void *aux) { struct scsipibus_attach_args *sa = aux; int priority; (void)scsipi_inqmatch(&sa->sa_inqbuf, dse_patterns, sizeof(dse_patterns) / sizeof(dse_patterns[0]), sizeof(dse_patterns[0]), &priority); return priority; } /* * The routine called by the low level scsi routine when it discovers * a device suitable for this driver. */ static void dseattach(device_t parent, device_t self, void *aux) { struct dse_softc *sc = device_private(self); struct scsipibus_attach_args *sa = aux; struct scsipi_periph *periph = sa->sa_periph; struct ifnet *ifp = &sc->sc_ethercom.ec_if; uint8_t myaddr[ETHER_ADDR_LEN]; char wqname[MAXCOMLEN]; int rv; sc->sc_dev = self; aprint_normal("\n"); SC_DEBUG(periph, SCSIPI_DB2, ("dseattach: ")); sc->sc_attach_state = 0; callout_init(&sc->sc_recv_ch, CALLOUT_MPSAFE); callout_setfunc(&sc->sc_recv_ch, dse_recv_callout, (void *)sc); mutex_init(&sc->sc_iflock, MUTEX_DEFAULT, IPL_SOFTNET); /* * Store information needed to contact our base driver */ sc->sc_periph = periph; periph->periph_dev = sc->sc_dev; periph->periph_switch = &dse_switch; #if 0 sc_periph->sc_link_dbflags = SCSIPI_DB1; #endif dse_poll = mstohz(DSE_POLL); dse_poll = dse_poll? dse_poll: 1; dse_poll0 = mstohz(DSE_POLL0); dse_poll0 = dse_poll0? dse_poll0: 1; /* * Initialize and attach send and receive buffers */ sc->sc_tbuf = malloc(ETHERMTU + sizeof(struct ether_header) + DSE_EXTRAS_TX + 16, M_DEVBUF, M_WAITOK); sc->sc_rbuf = malloc(RBUF_LEN + 16, M_DEVBUF, M_WAITOK); /* initialize adaptor and obtain MAC address */ dse_init_adaptor(sc); sc->sc_attach_state = 1; /* Initialize ifnet structure. */ strcpy(ifp->if_xname, device_xname(sc->sc_dev)); ifp->if_softc = sc; ifp->if_start = dse_ifstart; ifp->if_ioctl = dse_ioctl; ifp->if_watchdog = dsewatchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_extflags = IFEF_MPSAFE; dse_get_addr(sc, myaddr); /* Attach the interface. */ if_initialize(ifp); snprintf(wqname, sizeof(wqname), "%sRx", device_xname(sc->sc_dev)); rv = workqueue_create(&sc->sc_recv_wq, wqname, dse_recv_worker, sc, PRI_SOFTNET, IPL_NET, WQ_MPSAFE); if (rv != 0) { aprint_error_dev(sc->sc_dev, "unable to create recv Rx workqueue\n"); dsedetach(sc->sc_dev, 0); return; /* Error */ } sc->sc_recv_work_pending = false; sc->sc_attach_state = 2; snprintf(wqname, sizeof(wqname), "%sTx", device_xname(sc->sc_dev)); rv = workqueue_create(&sc->sc_send_wq, wqname, dse_send_worker, ifp, PRI_SOFTNET, IPL_NET, WQ_MPSAFE); if (rv != 0) { aprint_error_dev(sc->sc_dev, "unable to create send Tx workqueue\n"); dsedetach(sc->sc_dev, 0); return; /* Error */ } sc->sc_send_work_pending = false; sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if); ether_ifattach(ifp, myaddr); if_register(ifp); sc->sc_attach_state = 4; bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); } static int dsedetach(device_t self, int flags) { struct dse_softc *sc = device_private(self); struct ifnet *ifp = &sc->sc_ethercom.ec_if; switch(sc->sc_attach_state) { case 4: dse_stop(sc); mutex_enter(&sc->sc_iflock); ifp->if_flags &= ~IFF_RUNNING; dse_disable(sc); ether_ifdetach(ifp); if_detach(ifp); mutex_exit(&sc->sc_iflock); if_percpuq_destroy(sc->sc_ipq); /*FALLTHROUGH*/ case 3: workqueue_destroy(sc->sc_send_wq); /*FALLTHROUGH*/ case 2: workqueue_destroy(sc->sc_recv_wq); /*FALLTHROUGH*/ case 1: free(sc->sc_rbuf, M_DEVBUF); free(sc->sc_tbuf, M_DEVBUF); callout_destroy(&sc->sc_recv_ch); mutex_destroy(&sc->sc_iflock); break; default: aprint_error_dev(sc->sc_dev, "detach failed (state %d)\n", sc->sc_attach_state); return 1; break; } return 0; } /* * submit SCSI command */ static __inline int dse_scsipi_cmd(struct scsipi_periph *periph, struct scsipi_generic *cmd, int cmdlen, u_char *data_addr, int datalen, int retries, int timeout, struct buf *bp, int flags) { int error = 0; error = scsipi_command(periph, cmd, cmdlen, data_addr, datalen, retries, timeout, bp, flags); return error; } /* * Start routine for calling from network sub system */ static void dse_ifstart(struct ifnet *ifp) { struct dse_softc *sc = ifp->if_softc; mutex_enter(&sc->sc_iflock); if (!sc->sc_send_work_pending) { sc->sc_send_work_pending = true; workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work, NULL); } mutex_exit(&sc->sc_iflock); if (sc->sc_flags & DSE_NEED_RECV) { sc->sc_flags &= ~DSE_NEED_RECV; } } /* * Invoke the transmit workqueue and transmission on the interface. */ static void dse_send_worker(struct work *wk, void *cookie) { struct ifnet *ifp = cookie; struct dse_softc *sc = ifp->if_softc; scsi_dayna_ether_generic cmd_send; struct mbuf *m, *m0; int len, error; u_char *cp; mutex_enter(&sc->sc_iflock); sc->sc_send_work_pending = false; mutex_exit(&sc->sc_iflock); KASSERT(if_is_mpsafe(ifp)); /* Don't transmit if interface is busy or not running */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; while (1) { IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; /* If BPF is listening on this interface, let it see the * packet before we commit it to the wire. */ bpf_mtap(ifp, m0, BPF_D_OUT); /* We need to use m->m_pkthdr.len, so require the header */ if ((m0->m_flags & M_PKTHDR) == 0) panic("ctscstart: no header mbuf"); len = m0->m_pkthdr.len; /* Mark the interface busy. */ ifp->if_flags |= IFF_OACTIVE; /* Chain; copy into linear buffer allocated at attach time. */ cp = sc->sc_tbuf; for (m = m0; m != NULL; ) { memcpy(cp, mtod(m, u_char *), m->m_len); cp += m->m_len; m = m0 = m_free(m); } if (len < DSE_MINSIZE) { #ifdef DSE_DEBUG if (sc->sc_debug) aprint_error_dev(sc->sc_dev, "packet size %d (%zu) < %d\n", len, cp - (u_char *)sc->sc_tbuf, DSE_MINSIZE); #endif memset(cp, 0, DSE_MINSIZE - len); len = DSE_MINSIZE; } /* Fill out SCSI command. */ memset(&cmd_send, 0, sizeof(cmd_send)); cmd_send.opcode[0] = DAYNA_CMD_SEND; _lto2b(len, &(cmd_send.length[0])); cmd_send.byte6 = 0x00; /* Send command to device. */ error = dse_scsipi_cmd(sc->sc_periph, (void *)&cmd_send, sizeof(cmd_send), sc->sc_tbuf, len, DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_NOSLEEP | XS_CTL_POLL | XS_CTL_DATA_OUT); if (error) { aprint_error_dev(sc->sc_dev, "not queued, error %d\n", error); if_statinc(ifp, if_oerrors); ifp->if_flags &= ~IFF_OACTIVE; } else if_statinc(ifp, if_opackets); } } /* * Called from the scsibus layer via our scsi device switch. */ static void dsedone(struct scsipi_xfer *xs, int error) { struct dse_softc *sc = device_private(xs->xs_periph->periph_dev); struct scsipi_generic *cmd = xs->cmd; struct ifnet *ifp = &sc->sc_ethercom.ec_if; if (IS_SEND(cmd)) { ifp->if_flags &= ~IFF_OACTIVE; } else if (IS_RECV(cmd)) { /* RECV complete */ /* pass data up. reschedule a recv */ /* scsipi_free_xs will call start. Harmless. */ if (error) { /* Reschedule after a delay */ callout_schedule(&sc->sc_recv_ch, dse_poll); } else { int n, ntimeo; n = dse_read(sc, xs->data, xs->datalen - xs->resid); if (n > dse_max_received) dse_max_received = n; if (n == 0) ntimeo = dse_poll; else if (n >= RDATA_MAX) ntimeo = dse_poll0; else { ntimeo = sc->sc_last_timeout; ntimeo = (ntimeo * RDATA_GOAL)/n; ntimeo = (ntimeo < dse_poll0? dse_poll0: ntimeo); ntimeo = (ntimeo > dse_poll? dse_poll: ntimeo); } sc->sc_last_timeout = ntimeo; callout_schedule(&sc->sc_recv_ch, ntimeo); } } } /* * Setup a receive command by queuing the work. * Usually called from a callout, but also from se_init(). */ static void dse_recv_callout(void *v) { /* do a recv command */ struct dse_softc *sc = (struct dse_softc *) v; if (sc->sc_enabled == 0) return; mutex_enter(&sc->sc_iflock); if (sc->sc_recv_work_pending == true) { callout_schedule(&sc->sc_recv_ch, dse_poll); mutex_exit(&sc->sc_iflock); return; } sc->sc_recv_work_pending = true; workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work, NULL); mutex_exit(&sc->sc_iflock); } /* * Invoke the receive workqueue */ static void dse_recv_worker(struct work *wk, void *cookie) { struct dse_softc *sc = (struct dse_softc *) cookie; dse_recv(sc); mutex_enter(&sc->sc_iflock); sc->sc_recv_work_pending = false; mutex_exit(&sc->sc_iflock); } /* * Do the actual work of receiving data. */ static void dse_recv(struct dse_softc *sc) { scsi_dayna_ether_generic cmd_recv; int error, len; /* do a recv command */ /* fill out command buffer */ memset(&cmd_recv, 0, sizeof(cmd_recv)); cmd_recv.opcode[0] = DAYNA_CMD_RECV; len = MAX_BYTES_RX + DSE_EXTRAS_RX; _lto2b(len, &(cmd_recv.length[0])); cmd_recv.byte6 = 0xC0; error = dse_scsipi_cmd(sc->sc_periph, (void *)&cmd_recv, sizeof(cmd_recv), sc->sc_rbuf, RBUF_LEN, DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_NOSLEEP | XS_CTL_POLL | XS_CTL_DATA_IN); if (error) callout_schedule(&sc->sc_recv_ch, dse_poll); } /* * We copy the data into mbufs. When full cluster sized units are present * we copy into clusters. */ static struct mbuf * dse_get(struct dse_softc *sc, uint8_t *data, int totlen) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mbuf *m, *m0, *newm; int len; MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == NULL) return NULL; m_set_rcvif(m0, ifp); m0->m_pkthdr.len = totlen; len = MHLEN; m = m0; while (totlen > 0) { if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if((m->m_flags & M_EXT) == 0) goto bad; len = MCLBYTES; } if (m == m0) { char *newdata = (char *) ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); len -= newdata - m->m_data; m->m_data = newdata; } m->m_len = len = uimin(totlen, len); memcpy(mtod(m, void *), data, len); data += len; totlen -= len; if (totlen > 0) { MGET(newm, M_DONTWAIT, MT_DATA); if (newm == NULL) goto bad; len = MLEN; m = m->m_next = newm; } } return m0; bad: m_freem(m0); return NULL ; } #ifdef MAC68K_DEBUG static int peek_packet(uint8_t* buf) { struct ether_header *eh; uint16_t type; int len; eh = (struct ether_header*)buf; type = _2btol((uint8_t*)&(eh->ether_type)); len = sizeof(struct ether_header); if (type <= ETHERMTU) { /* for 802.3 */ len += type; } else{ /* for Ethernet II (DIX) */ switch (type) { case ETHERTYPE_ARP: len += 28; break; case ETHERTYPE_IP: len += _2btol(buf + sizeof(struct ether_header) + 2); break; default: len = 0; goto l_end; break; } } if (len < DSE_MINSIZE) { len = DSE_MINSIZE; } len += ETHER_CRC_LEN; l_end:; return len; } #endif /* * Pass packets to higher levels. */ static int dse_read(struct dse_softc *sc, uint8_t *data, int datalen) { struct mbuf *m; struct ifnet *ifp = &sc->sc_ethercom.ec_if; int len; int n; #ifdef MAC68K_DEBUG int peek_flag = 1; #endif mutex_enter(&sc->sc_iflock); n = 0; while (datalen >= DSE_HEADER_RX) { /* * fetch bytes of stream. * here length = (ether frame length) + (FCS's 4 bytes) */ /* fetch frame length */ len = _2btol(data); /* skip header part */ data += DSE_HEADER_RX; datalen -= DSE_HEADER_RX; #if 0 /* 03/10/2001 only for debug */ { printf("DATALEN %d len %d\n", datalen, len); int j; printf("\ndump[%d]: ",n); for ( j = 0 ; j < datalen ; j++ ) { printf("%02X ",data[j-DSE_HEADER_RX]); } } #endif #ifdef MAC68K_DEBUG if (peek_flag) { peek_flag = 0; len = peek_packet(data); } #endif if (len == 0) break; #ifdef DSE_DEBUG aprint_error_dev(sc->sc_dev, "dse_read: datalen = %d, packetlen" " = %d, proto = 0x%04x\n", datalen, len, ntohs(((struct ether_header *)data)->ether_type)); #endif if ((len < (DSE_MINSIZE + ETHER_CRC_LEN)) || (MAX_BYTES_RX < len)) { #ifdef DSE_DEBUG aprint_error_dev(sc->sc_dev, "invalid packet size " "%d; dropping\n", len); #endif if_statinc(ifp, if_ierrors); break; } /* Don't need crc. Must keep ether header for BPF */ m = dse_get(sc, data, len - ETHER_CRC_LEN); if (m == NULL) { #ifdef DSE_DEBUG if (sc->sc_debug) aprint_error_dev(sc->sc_dev, "dse_read: " "dse_get returned null\n"); #endif if_statinc(ifp, if_ierrors); goto next_packet; } if_statinc(ifp, if_ipackets); /* * Check if there's a BPF listener on this interface. * If so, hand off the raw packet to BPF. */ if (ifp->if_bpf) bpf_mtap(ifp, m, BPF_D_OUT); /* Pass the packet up. */ if_percpuq_enqueue(sc->sc_ipq, m); next_packet: data += len; datalen -= len; n++; } mutex_exit(&sc->sc_iflock); return n; } static void dsewatchdog(struct ifnet *ifp) { struct dse_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); if_statinc(ifp, if_oerrors); dse_reset(sc); } static int dse_reset(struct dse_softc *sc) { int error; #if 0 /* Maybe we don't *really* want to reset the entire bus * because the ctron isn't working. We would like to send a * "BUS DEVICE RESET" message, but don't think the ctron * understands it. */ error = dse_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, DSE_RETRIES, 2000, NULL, XS_CTL_RESET); #endif error = dse_init(sc); return error; } static int dse_init_adaptor(struct dse_softc *sc) { scsi_dayna_ether_generic cmd_vend1; u_char tmpbuf[sizeof(cmd_vend1)]; int error; #if 0 /* 07/21/2001 for test */ /* Maybe we don't *really* want to reset the entire bus * because the ctron isn't working. We would like to send a * "BUS DEVICE RESET" message, but don't think the ctron * understands it. */ error = dse_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, DSE_RETRIES, 2000, NULL, XS_CTL_RESET); #endif cmd_vend1 = sonic_ether_vendor1; error = dse_scsipi_cmd(sc->sc_periph, (struct scsipi_generic *)&cmd_vend1, sizeof(cmd_vend1), &(tmpbuf[0]), sizeof(tmpbuf), DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_IN); if (error) goto l_end; /* wait 500 msec */ kpause("dsesleep", false, hz / 2, NULL); l_end: return error; } static int dse_get_addr(struct dse_softc *sc, uint8_t *myaddr) { scsi_dayna_ether_generic cmd_get_addr; u_char tmpbuf[REQ_LEN_GET_ADDR]; int error; memset(&cmd_get_addr, 0, sizeof(cmd_get_addr)); cmd_get_addr.opcode[0] = DAYNA_CMD_GET_ADDR; _lto2b(REQ_LEN_GET_ADDR, cmd_get_addr.length); error = dse_scsipi_cmd(sc->sc_periph, (struct scsipi_generic *)&cmd_get_addr, sizeof(cmd_get_addr), tmpbuf, sizeof(tmpbuf), DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_IN); if (error == 0) { memcpy(myaddr, &(tmpbuf[0]), ETHER_ADDR_LEN); aprint_error_dev(sc->sc_dev, "ethernet address %s\n", ether_sprintf(myaddr)); } return error; } #if 0 /* 07/16/2000 comment-out */ static int dse_set_mode(struct dse_softc *sc, int len, int mode) return 0; } #endif static int dse_init(struct dse_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; int error = 0; if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == IFF_UP) { ifp->if_flags |= IFF_RUNNING; mutex_enter(&sc->sc_iflock); if (!sc->sc_recv_work_pending) { sc->sc_recv_work_pending = true; workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work, NULL); } mutex_exit(&sc->sc_iflock); ifp->if_flags &= ~IFF_OACTIVE; mutex_enter(&sc->sc_iflock); if (!sc->sc_send_work_pending) { sc->sc_send_work_pending = true; workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work, NULL); } mutex_exit(&sc->sc_iflock); } return error; } static uint8_t BROADCAST_ADDR[ETHER_ADDR_LEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static int dse_set_multi(struct dse_softc *sc) { scsi_dayna_ether_generic cmd_set_multi; struct ether_multistep step; struct ether_multi *enm; u_char *cp, *mybuf; int error, len; error = 0; #ifdef DSE_DEBUG aprint_error_dev(sc->sc_dev, "dse_set_multi\n"); #endif mybuf = malloc(ETHER_ADDR_LEN * DSE_MCAST_MAX, M_DEVBUF, M_NOWAIT); if (mybuf == NULL) { error = EIO; goto l_end; } /* * copy all entries to transfer buffer */ cp = mybuf; len = 0; ETHER_FIRST_MULTI(step, &(sc->sc_ethercom), enm); while ((len < (DSE_MCAST_MAX - 1)) && (enm != NULL)) { /* ### refer low side entry */ memcpy(cp, enm->enm_addrlo, ETHER_ADDR_LEN); cp += ETHER_ADDR_LEN; len++; ETHER_NEXT_MULTI(step, enm); } /* add broadcast address as default */ memcpy(cp, BROADCAST_ADDR, ETHER_ADDR_LEN); len++; len *= ETHER_ADDR_LEN; memset(&cmd_set_multi, 0, sizeof(cmd_set_multi)); cmd_set_multi.opcode[0] = DAYNA_CMD_SET_MULTI; _lto2b(len, cmd_set_multi.length); error = dse_scsipi_cmd(sc->sc_periph, (struct scsipi_generic*)&cmd_set_multi, sizeof(cmd_set_multi), mybuf, len, DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_OUT); free(mybuf, M_DEVBUF); l_end: return error; } static void dse_stop(struct dse_softc *sc) { /* Don't schedule any reads */ callout_stop(&sc->sc_recv_ch); /* Wait for the workqueues to finish */ mutex_enter(&sc->sc_iflock); workqueue_wait(sc->sc_recv_wq, &sc->sc_recv_work); workqueue_wait(sc->sc_send_wq, &sc->sc_send_work); mutex_exit(&sc->sc_iflock); /* Abort any scsi cmds in progress */ mutex_enter(chan_mtx(sc->sc_periph->periph_channel)); scsipi_kill_pending(sc->sc_periph); mutex_exit(chan_mtx(sc->sc_periph->periph_channel)); } /* * Process an ioctl request. */ static int dse_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct dse_softc *sc; struct ifaddr *ifa; struct ifreq *ifr; struct sockaddr *sa; int error; error = 0; sc = ifp->if_softc; ifa = (struct ifaddr *)data; ifr = (struct ifreq *)data; switch (cmd) { case SIOCINITIFADDR: mutex_enter(&sc->sc_iflock); if ((error = dse_enable(sc)) != 0) break; ifp->if_flags |= IFF_UP; mutex_exit(&sc->sc_iflock); #if 0 if ((error = dse_set_media(sc, CMEDIA_AUTOSENSE)) != 0) break; #endif switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: if ((error = dse_init(sc)) != 0) break; arp_ifinit(ifp, ifa); break; #endif #ifdef NETATALK case AF_APPLETALK: if ((error = dse_init(sc)) != 0) break; break; #endif default: error = dse_init(sc); break; } break; case SIOCSIFADDR: mutex_enter(&sc->sc_iflock); error = dse_enable(sc); mutex_exit(&sc->sc_iflock); if (error != 0) break; ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: if ((error = dse_init(sc)) != 0) break; arp_ifinit(ifp, ifa); break; #endif #ifdef NETATALK case AF_APPLETALK: if ((error = dse_init(sc)) != 0) break; break; #endif default: error = dse_init(sc); break; } break; case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; /* XXX re-use ether_ioctl() */ switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { case IFF_RUNNING: /* * If interface is marked down and it is running, then * stop it. */ dse_stop(sc); mutex_enter(&sc->sc_iflock); ifp->if_flags &= ~IFF_RUNNING; dse_disable(sc); mutex_exit(&sc->sc_iflock); break; case IFF_UP: /* * If interface is marked up and it is stopped, then * start it. */ mutex_enter(&sc->sc_iflock); error = dse_enable(sc); mutex_exit(&sc->sc_iflock); if (error) break; error = dse_init(sc); break; default: /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ mutex_enter(&sc->sc_iflock); if (sc->sc_enabled) error = dse_init(sc); mutex_exit(&sc->sc_iflock); break; } #ifdef DSE_DEBUG if (ifp->if_flags & IFF_DEBUG) sc->sc_debug = 1; else sc->sc_debug = 0; #endif break; case SIOCADDMULTI: if (sc->sc_enabled == 0) { error = EIO; break; } mutex_enter(&sc->sc_iflock); sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK); mutex_exit(&sc->sc_iflock); if (ether_addmulti(sa, &sc->sc_ethercom) == ENETRESET) { error = dse_set_multi(sc); #ifdef DSE_DEBUG aprint_error_dev(sc->sc_dev, "add multi: %s\n", ether_sprintf(ifr->ifr_addr.sa_data)); #endif } else error = 0; mutex_enter(&sc->sc_iflock); sockaddr_free(sa); mutex_exit(&sc->sc_iflock); break; case SIOCDELMULTI: if (sc->sc_enabled == 0) { error = EIO; break; } mutex_enter(&sc->sc_iflock); sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK); mutex_exit(&sc->sc_iflock); if (ether_delmulti(sa, &sc->sc_ethercom) == ENETRESET) { error = dse_set_multi(sc); #ifdef DSE_DEBUG aprint_error_dev(sc->sc_dev, "delete multi: %s\n", ether_sprintf(ifr->ifr_addr.sa_data)); #endif } else error = 0; mutex_enter(&sc->sc_iflock); sockaddr_free(sa); mutex_exit(&sc->sc_iflock); break; default: error = ether_ioctl(ifp, cmd, data); break; } return error; } /* * Enable the network interface. */ int dse_enable(struct dse_softc *sc) { struct scsipi_periph *periph = sc->sc_periph; struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter; int error = 0; if (sc->sc_enabled == 0) { if ((error = scsipi_adapter_addref(adapt)) == 0) sc->sc_enabled = 1; else aprint_error_dev(sc->sc_dev, "device enable failed\n"); } return error; } /* * Disable the network interface. */ void dse_disable(struct dse_softc *sc) { struct scsipi_periph *periph = sc->sc_periph; struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter; if (sc->sc_enabled != 0) { scsipi_adapter_delref(adapt); sc->sc_enabled = 0; } } #define DSEUNIT(z) (minor(z)) /* * open the device. */ int dseopen(dev_t dev, int flag, int fmt, struct lwp *l) { int unit, error; struct dse_softc *sc; struct scsipi_periph *periph; struct scsipi_adapter *adapt; unit = DSEUNIT(dev); sc = device_lookup_private(&dse_cd, unit); if (sc == NULL) return ENXIO; periph = sc->sc_periph; adapt = periph->periph_channel->chan_adapter; if ((error = scsipi_adapter_addref(adapt)) != 0) return error; SC_DEBUG(periph, SCSIPI_DB1, ("scopen: dev=0x%"PRIx64" (unit %d (of %d))\n", dev, unit, dse_cd.cd_ndevs)); periph->periph_flags |= PERIPH_OPEN; SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n")); return 0; } /* * close the device.. only called if we are the LAST * occurence of an open device */ int dseclose(dev_t dev, int flag, int fmt, struct lwp *l) { struct dse_softc *sc = device_lookup_private(&dse_cd, DSEUNIT(dev)); struct scsipi_periph *periph = sc->sc_periph; struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter; SC_DEBUG(sc->sc_periph, SCSIPI_DB1, ("closing\n")); scsipi_wait_drain(periph); scsipi_adapter_delref(adapt); periph->periph_flags &= ~PERIPH_OPEN; return 0; } /* * Perform special action on behalf of the user * Only does generic scsi ioctls. */ int dseioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l) { struct dse_softc *sc = device_lookup_private(&dse_cd, DSEUNIT(dev)); return (scsipi_do_ioctl(sc->sc_periph, dev, cmd, addr, flag, l)); }