/* $NetBSD: virtio.c,v 1.81 2024/02/10 02:25:15 isaki Exp $ */ /* * Copyright (c) 2020 The NetBSD Foundation, Inc. * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg. * Copyright (c) 2010 Minoura Makoto. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.81 2024/02/10 02:25:15 isaki Exp $"); #include #include #include #include #include #include #include #include #define VIRTIO_PRIVATE #include /* XXX: move to non-pci */ #include /* XXX: move to non-pci */ #define MINSEG_INDIRECT 2 /* use indirect if nsegs >= this value */ /* * The maximum descriptor size is 2^15. Use that value as the end of * descriptor chain terminator since it will never be a valid index * in the descriptor table. */ #define VRING_DESC_CHAIN_END 32768 /* incomplete list */ static const char *virtio_device_name[] = { "unknown (0)", /* 0 */ "network", /* 1 */ "block", /* 2 */ "console", /* 3 */ "entropy", /* 4 */ "memory balloon", /* 5 */ "I/O memory", /* 6 */ "remote processor messaging", /* 7 */ "SCSI", /* 8 */ "9P transport", /* 9 */ }; #define NDEVNAMES __arraycount(virtio_device_name) static void virtio_reset_vq(struct virtio_softc *, struct virtqueue *); void virtio_set_status(struct virtio_softc *sc, int status) { sc->sc_ops->set_status(sc, status); } /* * Reset the device. */ /* * To reset the device to a known state, do following: * virtio_reset(sc); // this will stop the device activity * ; // virtio_dequeue() still can be called * ; * virtio_reinit_start(sc); // dequeue prohibited * newfeatures = virtio_negotiate_features(sc, requestedfeatures); * ; * virtio_reinit_end(sc); // device activated; enqueue allowed * Once attached, feature negotiation can only be allowed after virtio_reset. */ void virtio_reset(struct virtio_softc *sc) { virtio_device_reset(sc); } int virtio_reinit_start(struct virtio_softc *sc) { int i, r; virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK); virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER); for (i = 0; i < sc->sc_nvqs; i++) { int n; struct virtqueue *vq = &sc->sc_vqs[i]; n = sc->sc_ops->read_queue_size(sc, vq->vq_index); if (n == 0) /* vq disappeared */ continue; if (n != vq->vq_num) { panic("%s: virtqueue size changed, vq index %d\n", device_xname(sc->sc_dev), vq->vq_index); } virtio_reset_vq(sc, vq); sc->sc_ops->setup_queue(sc, vq->vq_index, vq->vq_dmamap->dm_segs[0].ds_addr); } r = sc->sc_ops->setup_interrupts(sc, 1); if (r != 0) goto fail; return 0; fail: virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED); return 1; } void virtio_reinit_end(struct virtio_softc *sc) { virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK); } /* * Feature negotiation. */ void virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features) { if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) && !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */ guest_features |= VIRTIO_F_RING_INDIRECT_DESC; sc->sc_ops->neg_features(sc, guest_features); if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC) sc->sc_indirect = true; else sc->sc_indirect = false; } /* * Device configuration registers readers/writers */ #if 0 #define DPRINTFR(n, fmt, val, index, num) \ printf("\n%s (", n); \ for (int i = 0; i < num; i++) \ printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \ printf(") -> "); printf(fmt, val); printf("\n"); #define DPRINTFR2(n, fmt, val_s, val_n) \ printf("%s ", n); \ printf("\n stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n"); #else #define DPRINTFR(n, fmt, val, index, num) #define DPRINTFR2(n, fmt, val_s, val_n) #endif uint8_t virtio_read_device_config_1(struct virtio_softc *sc, int index) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; uint8_t val; val = bus_space_read_1(iot, ioh, index); DPRINTFR("read_1", "%02x", val, index, 1); return val; } uint16_t virtio_read_device_config_2(struct virtio_softc *sc, int index) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; uint16_t val; val = bus_space_read_2(iot, ioh, index); if (BYTE_ORDER != sc->sc_bus_endian) val = bswap16(val); DPRINTFR("read_2", "%04x", val, index, 2); DPRINTFR2("read_2", "%04x", bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index), bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index)); return val; } uint32_t virtio_read_device_config_4(struct virtio_softc *sc, int index) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; uint32_t val; val = bus_space_read_4(iot, ioh, index); if (BYTE_ORDER != sc->sc_bus_endian) val = bswap32(val); DPRINTFR("read_4", "%08x", val, index, 4); DPRINTFR2("read_4", "%08x", bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index), bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index)); return val; } /* * The Virtio spec explicitly tells that reading and writing 8 bytes are not * considered atomic and no triggers may be connected to reading or writing * it. We access it using two 32 reads. See virtio spec 4.1.3.1. */ uint64_t virtio_read_device_config_8(struct virtio_softc *sc, int index) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; union { uint64_t u64; uint32_t l[2]; } v; uint64_t val; v.l[0] = bus_space_read_4(iot, ioh, index); v.l[1] = bus_space_read_4(iot, ioh, index + 4); if (sc->sc_bus_endian != sc->sc_struct_endian) { v.l[0] = bswap32(v.l[0]); v.l[1] = bswap32(v.l[1]); } val = v.u64; if (BYTE_ORDER != sc->sc_struct_endian) val = bswap64(val); DPRINTFR("read_8", "%08"PRIx64, val, index, 8); DPRINTFR2("read_8 low ", "%08x", bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index), bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index)); DPRINTFR2("read_8 high ", "%08x", bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4), bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4)); return val; } /* * In the older virtio spec, device config registers are host endian. On newer * they are little endian. Some newer devices however explicitly specify their * register to always be little endian. These functions cater for these. */ uint16_t virtio_read_device_config_le_2(struct virtio_softc *sc, int index) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; uint16_t val; val = bus_space_read_2(iot, ioh, index); #if !defined(__aarch64__) && !defined(__arm__) /* * For big-endian aarch64/armv7, bus endian is always LSB, but * byte-order is automatically swapped by bus_space(9) (see also * comments in virtio_pci.c). Therefore, no need to swap here. */ if (sc->sc_bus_endian != LITTLE_ENDIAN) val = bswap16(val); #endif DPRINTFR("read_le_2", "%04x", val, index, 2); DPRINTFR2("read_le_2", "%04x", bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0), bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0)); return val; } uint32_t virtio_read_device_config_le_4(struct virtio_softc *sc, int index) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; uint32_t val; val = bus_space_read_4(iot, ioh, index); #if !defined(__aarch64__) && !defined(__arm__) /* See virtio_read_device_config_le_2() above. */ if (sc->sc_bus_endian != LITTLE_ENDIAN) val = bswap32(val); #endif DPRINTFR("read_le_4", "%08x", val, index, 4); DPRINTFR2("read_le_4", "%08x", bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0), bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0)); return val; } void virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; bus_space_write_1(iot, ioh, index, value); } void virtio_write_device_config_2(struct virtio_softc *sc, int index, uint16_t value) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; if (BYTE_ORDER != sc->sc_bus_endian) value = bswap16(value); bus_space_write_2(iot, ioh, index, value); } void virtio_write_device_config_4(struct virtio_softc *sc, int index, uint32_t value) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; if (BYTE_ORDER != sc->sc_bus_endian) value = bswap32(value); bus_space_write_4(iot, ioh, index, value); } /* * The Virtio spec explicitly tells that reading and writing 8 bytes are not * considered atomic and no triggers may be connected to reading or writing * it. We access it using two 32 bit writes. For good measure it is stated to * always write lsb first just in case of a hypervisor bug. See See virtio * spec 4.1.3.1. */ void virtio_write_device_config_8(struct virtio_softc *sc, int index, uint64_t value) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; union { uint64_t u64; uint32_t l[2]; } v; if (BYTE_ORDER != sc->sc_struct_endian) value = bswap64(value); v.u64 = value; if (sc->sc_bus_endian != sc->sc_struct_endian) { v.l[0] = bswap32(v.l[0]); v.l[1] = bswap32(v.l[1]); } if (sc->sc_struct_endian == LITTLE_ENDIAN) { bus_space_write_4(iot, ioh, index, v.l[0]); bus_space_write_4(iot, ioh, index + 4, v.l[1]); } else { bus_space_write_4(iot, ioh, index + 4, v.l[1]); bus_space_write_4(iot, ioh, index, v.l[0]); } } /* * In the older virtio spec, device config registers are host endian. On newer * they are little endian. Some newer devices however explicitly specify their * register to always be little endian. These functions cater for these. */ void virtio_write_device_config_le_2(struct virtio_softc *sc, int index, uint16_t value) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; if (sc->sc_bus_endian != LITTLE_ENDIAN) value = bswap16(value); bus_space_write_2(iot, ioh, index, value); } void virtio_write_device_config_le_4(struct virtio_softc *sc, int index, uint32_t value) { bus_space_tag_t iot = sc->sc_devcfg_iot; bus_space_handle_t ioh = sc->sc_devcfg_ioh; if (sc->sc_bus_endian != LITTLE_ENDIAN) value = bswap32(value); bus_space_write_4(iot, ioh, index, value); } /* * data structures endian helpers */ uint16_t virtio_rw16(struct virtio_softc *sc, uint16_t val) { KASSERT(sc); return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val; } uint32_t virtio_rw32(struct virtio_softc *sc, uint32_t val) { KASSERT(sc); return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val; } uint64_t virtio_rw64(struct virtio_softc *sc, uint64_t val) { KASSERT(sc); return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val; } /* * Interrupt handler. */ static void virtio_soft_intr(void *arg) { struct virtio_softc *sc = arg; KASSERT(sc->sc_intrhand != NULL); (*sc->sc_intrhand)(sc); } /* set to vq->vq_intrhand in virtio_init_vq_vqdone() */ static int virtio_vq_done(void *xvq) { struct virtqueue *vq = xvq; return vq->vq_done(vq); } static int virtio_vq_intr(struct virtio_softc *sc) { struct virtqueue *vq; int i, r = 0; for (i = 0; i < sc->sc_nvqs; i++) { vq = &sc->sc_vqs[i]; if (virtio_vq_is_enqueued(sc, vq) == 1) { r |= (*vq->vq_intrhand)(vq->vq_intrhand_arg); } } return r; } /* * dmamap sync operations for a virtqueue. */ static inline void vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops) { /* availoffset == sizeof(vring_desc) * vq_num */ bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset, ops); } static inline void vq_sync_aring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops) { uint16_t hdrlen = offsetof(struct vring_avail, ring); size_t payloadlen = vq->vq_num * sizeof(uint16_t); size_t usedlen = 0; if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) usedlen = sizeof(uint16_t); bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, vq->vq_availoffset, hdrlen + payloadlen + usedlen, ops); } static inline void vq_sync_aring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops) { uint16_t hdrlen = offsetof(struct vring_avail, ring); bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, vq->vq_availoffset, hdrlen, ops); } static inline void vq_sync_aring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops) { uint16_t hdrlen = offsetof(struct vring_avail, ring); size_t payloadlen = vq->vq_num * sizeof(uint16_t); bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, vq->vq_availoffset + hdrlen, payloadlen, ops); } static inline void vq_sync_aring_used(struct virtio_softc *sc, struct virtqueue *vq, int ops) { uint16_t hdrlen = offsetof(struct vring_avail, ring); size_t payloadlen = vq->vq_num * sizeof(uint16_t); size_t usedlen = sizeof(uint16_t); if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0) return; bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, vq->vq_availoffset + hdrlen + payloadlen, usedlen, ops); } static inline void vq_sync_uring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops) { uint16_t hdrlen = offsetof(struct vring_used, ring); size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem); size_t availlen = 0; if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) availlen = sizeof(uint16_t); bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, vq->vq_usedoffset, hdrlen + payloadlen + availlen, ops); } static inline void vq_sync_uring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops) { uint16_t hdrlen = offsetof(struct vring_used, ring); bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, vq->vq_usedoffset, hdrlen, ops); } static inline void vq_sync_uring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops) { uint16_t hdrlen = offsetof(struct vring_used, ring); size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem); bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, vq->vq_usedoffset + hdrlen, payloadlen, ops); } static inline void vq_sync_uring_avail(struct virtio_softc *sc, struct virtqueue *vq, int ops) { uint16_t hdrlen = offsetof(struct vring_used, ring); size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem); size_t availlen = sizeof(uint16_t); if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0) return; bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, vq->vq_usedoffset + hdrlen + payloadlen, availlen, ops); } static inline void vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot, int ops) { int offset = vq->vq_indirectoffset + sizeof(struct vring_desc) * vq->vq_maxnsegs * slot; bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, offset, sizeof(struct vring_desc) * vq->vq_maxnsegs, ops); } bool virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq) { if (vq->vq_queued) { vq->vq_queued = 0; vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE); } vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD); if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx)) return 0; vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD); return 1; } /* * Increase the event index in order to delay interrupts. */ int virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq, uint16_t nslots) { uint16_t idx, nused; idx = vq->vq_used_idx + nslots; /* set the new event index: avail_ring->used_event = idx */ *vq->vq_used_event = virtio_rw16(sc, idx); vq_sync_aring_used(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE); vq->vq_queued++; nused = (uint16_t) (virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx); KASSERT(nused <= vq->vq_num); return nslots < nused; } /* * Postpone interrupt until 3/4 of the available descriptors have been * consumed. */ int virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq) { uint16_t nslots; nslots = (uint16_t) (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4; return virtio_postpone_intr(sc, vq, nslots); } /* * Postpone interrupt until all of the available descriptors have been * consumed. */ int virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq) { uint16_t nslots; nslots = (uint16_t) (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx); return virtio_postpone_intr(sc, vq, nslots); } /* * Start/stop vq interrupt. No guarantee. */ void virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq) { if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) { /* * No way to disable the interrupt completely with * RingEventIdx. Instead advance used_event by half the * possible value. This won't happen soon and is far enough in * the past to not trigger a spurious interrupt. */ *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000); vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE); } else { vq->vq_avail->flags |= virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT); vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE); } vq->vq_queued++; } int virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq) { if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) { /* * If event index feature is negotiated, enabling interrupts * is done through setting the latest consumed index in the * used_event field */ *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx); vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE); } else { vq->vq_avail->flags &= ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT); vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE); } vq->vq_queued++; vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD); if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx)) return 0; vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD); return 1; } /* * Initialize vq structure. */ /* * Reset virtqueue parameters */ static void virtio_reset_vq(struct virtio_softc *sc, struct virtqueue *vq) { struct vring_desc *vds; int i, j; int vq_size = vq->vq_num; memset(vq->vq_vaddr, 0, vq->vq_bytesize); /* build the descriptor chain for free slot management */ vds = vq->vq_desc; for (i = 0; i < vq_size - 1; i++) { vds[i].next = virtio_rw16(sc, i + 1); } vds[i].next = virtio_rw16(sc, VRING_DESC_CHAIN_END); vq->vq_free_idx = 0; /* build the indirect descriptor chain */ if (vq->vq_indirect != NULL) { struct vring_desc *vd; for (i = 0; i < vq_size; i++) { vd = vq->vq_indirect; vd += vq->vq_maxnsegs * i; for (j = 0; j < vq->vq_maxnsegs - 1; j++) { vd[j].next = virtio_rw16(sc, j + 1); } } } /* enqueue/dequeue status */ vq->vq_avail_idx = 0; vq->vq_used_idx = 0; vq->vq_queued = 0; vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD); vq->vq_queued++; } /* Initialize vq */ void virtio_init_vq_vqdone(struct virtio_softc *sc, struct virtqueue *vq, int index, int (*vq_done)(struct virtqueue *)) { virtio_init_vq(sc, vq, index, virtio_vq_done, vq); vq->vq_done = vq_done; } void virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq, int index, int (*func)(void *), void *arg) { memset(vq, 0, sizeof(*vq)); vq->vq_owner = sc; vq->vq_num = sc->sc_ops->read_queue_size(sc, index); vq->vq_index = index; vq->vq_intrhand = func; vq->vq_intrhand_arg = arg; } /* * Allocate/free a vq. */ int virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq, int maxsegsize, int maxnsegs, const char *name) { bus_size_t size_desc, size_avail, size_used, size_indirect; bus_size_t allocsize = 0, size_desc_avail; int rsegs, r, hdrlen; unsigned int vq_num; #define VIRTQUEUE_ALIGN(n) roundup(n, VIRTIO_PAGE_SIZE) vq_num = vq->vq_num; if (vq_num == 0) { aprint_error_dev(sc->sc_dev, "virtqueue not exist, index %d for %s\n", vq->vq_index, name); goto err; } hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2; size_desc = sizeof(vq->vq_desc[0]) * vq_num; size_avail = sizeof(uint16_t) * hdrlen + sizeof(vq->vq_avail[0].ring[0]) * vq_num; size_used = sizeof(uint16_t) *hdrlen + sizeof(vq->vq_used[0].ring[0]) * vq_num; size_indirect = (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT) ? sizeof(struct vring_desc) * maxnsegs * vq_num : 0; size_desc_avail = VIRTQUEUE_ALIGN(size_desc + size_avail); size_used = VIRTQUEUE_ALIGN(size_used); allocsize = size_desc_avail + size_used + size_indirect; /* alloc and map the memory */ r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0, &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK); if (r != 0) { aprint_error_dev(sc->sc_dev, "virtqueue %d for %s allocation failed, " "error code %d\n", vq->vq_index, name, r); goto err; } r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize, &vq->vq_vaddr, BUS_DMA_WAITOK); if (r != 0) { aprint_error_dev(sc->sc_dev, "virtqueue %d for %s map failed, " "error code %d\n", vq->vq_index, name, r); goto err; } r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0, BUS_DMA_WAITOK, &vq->vq_dmamap); if (r != 0) { aprint_error_dev(sc->sc_dev, "virtqueue %d for %s dmamap creation failed, " "error code %d\n", vq->vq_index, name, r); goto err; } r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap, vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK); if (r != 0) { aprint_error_dev(sc->sc_dev, "virtqueue %d for %s dmamap load failed, " "error code %d\n", vq->vq_index, name, r); goto err; } vq->vq_bytesize = allocsize; vq->vq_maxsegsize = maxsegsize; vq->vq_maxnsegs = maxnsegs; #define VIRTIO_PTR(base, offset) (void *)((intptr_t)(base) + (offset)) /* initialize vring pointers */ vq->vq_desc = VIRTIO_PTR(vq->vq_vaddr, 0); vq->vq_availoffset = size_desc; vq->vq_avail = VIRTIO_PTR(vq->vq_vaddr, vq->vq_availoffset); vq->vq_used_event = VIRTIO_PTR(vq->vq_avail, offsetof(struct vring_avail, ring[vq_num])); vq->vq_usedoffset = size_desc_avail; vq->vq_used = VIRTIO_PTR(vq->vq_vaddr, vq->vq_usedoffset); vq->vq_avail_event = VIRTIO_PTR(vq->vq_used, offsetof(struct vring_used, ring[vq_num])); if (size_indirect > 0) { vq->vq_indirectoffset = size_desc_avail + size_used; vq->vq_indirect = VIRTIO_PTR(vq->vq_vaddr, vq->vq_indirectoffset); } #undef VIRTIO_PTR vq->vq_descx = kmem_zalloc(sizeof(vq->vq_descx[0]) * vq_num, KM_SLEEP); mutex_init(&vq->vq_freedesc_lock, MUTEX_SPIN, sc->sc_ipl); mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl); mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl); virtio_reset_vq(sc, vq); aprint_verbose_dev(sc->sc_dev, "allocated %" PRIuBUSSIZE " byte for virtqueue %d for %s, " "size %d\n", allocsize, vq->vq_index, name, vq_num); if (size_indirect > 0) aprint_verbose_dev(sc->sc_dev, "using %" PRIuBUSSIZE " byte (%d entries) indirect " "descriptors\n", size_indirect, maxnsegs * vq_num); return 0; err: sc->sc_ops->setup_queue(sc, vq->vq_index, 0); if (vq->vq_dmamap) bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap); if (vq->vq_vaddr) bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize); if (vq->vq_segs[0].ds_addr) bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1); memset(vq, 0, sizeof(*vq)); return -1; } int virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq) { uint16_t s; size_t i; if (vq->vq_vaddr == NULL) return 0; /* device must be already deactivated */ /* confirm the vq is empty */ s = vq->vq_free_idx; i = 0; while (s != virtio_rw16(sc, VRING_DESC_CHAIN_END)) { s = vq->vq_desc[s].next; i++; } if (i != vq->vq_num) { printf("%s: freeing non-empty vq, index %d\n", device_xname(sc->sc_dev), vq->vq_index); return EBUSY; } /* tell device that there's no virtqueue any longer */ sc->sc_ops->setup_queue(sc, vq->vq_index, 0); vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE); kmem_free(vq->vq_descx, sizeof(vq->vq_descx[0]) * vq->vq_num); bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap); bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap); bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize); bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1); mutex_destroy(&vq->vq_freedesc_lock); mutex_destroy(&vq->vq_uring_lock); mutex_destroy(&vq->vq_aring_lock); memset(vq, 0, sizeof(*vq)); return 0; } /* * Free descriptor management. */ static int vq_alloc_slot_locked(struct virtio_softc *sc, struct virtqueue *vq, size_t nslots) { struct vring_desc *vd; uint16_t head, tail; size_t i; KASSERT(mutex_owned(&vq->vq_freedesc_lock)); head = tail = virtio_rw16(sc, vq->vq_free_idx); for (i = 0; i < nslots - 1; i++) { if (tail == VRING_DESC_CHAIN_END) return VRING_DESC_CHAIN_END; vd = &vq->vq_desc[tail]; vd->flags = virtio_rw16(sc, VRING_DESC_F_NEXT); tail = virtio_rw16(sc, vd->next); } if (tail == VRING_DESC_CHAIN_END) return VRING_DESC_CHAIN_END; vd = &vq->vq_desc[tail]; vd->flags = virtio_rw16(sc, 0); vq->vq_free_idx = vd->next; return head; } static uint16_t vq_alloc_slot(struct virtio_softc *sc, struct virtqueue *vq, size_t nslots) { uint16_t rv; mutex_enter(&vq->vq_freedesc_lock); rv = vq_alloc_slot_locked(sc, vq, nslots); mutex_exit(&vq->vq_freedesc_lock); return rv; } static void vq_free_slot(struct virtio_softc *sc, struct virtqueue *vq, uint16_t slot) { struct vring_desc *vd; uint16_t s; mutex_enter(&vq->vq_freedesc_lock); vd = &vq->vq_desc[slot]; while ((vd->flags & virtio_rw16(sc, VRING_DESC_F_NEXT)) != 0) { s = virtio_rw16(sc, vd->next); vd = &vq->vq_desc[s]; } vd->next = vq->vq_free_idx; vq->vq_free_idx = virtio_rw16(sc, slot); mutex_exit(&vq->vq_freedesc_lock); } /* * Enqueue several dmamaps as a single request. */ /* * Typical usage: * number of followings are stored in arrays * - command blocks (in dmamem) should be pre-allocated and mapped * - dmamaps for command blocks should be pre-allocated and loaded * - dmamaps for payload should be pre-allocated * r = virtio_enqueue_prep(sc, vq, &slot); // allocate a slot * if (r) // currently 0 or EAGAIN * return r; * r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..); * if (r) { * virtio_enqueue_abort(sc, vq, slot); * return r; * } * r = virtio_enqueue_reserve(sc, vq, slot, * dmamap_payload[slot]->dm_nsegs + 1); * // ^ +1 for command * if (r) { // currently 0 or EAGAIN * bus_dmamap_unload(dmat, dmamap_payload[slot]); * return r; // do not call abort() * } * * bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE); * bus_dmamap_sync(dmat, dmamap_payload[slot],...); * virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false); * virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite); * virtio_enqueue_commit(sc, vq, slot, true); */ /* * enqueue_prep: allocate a slot number */ int virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp) { uint16_t slot; KASSERT(slotp != NULL); slot = vq_alloc_slot(sc, vq, 1); if (slot == VRING_DESC_CHAIN_END) return EAGAIN; *slotp = slot; return 0; } /* * enqueue_reserve: allocate remaining slots and build the descriptor chain. */ int virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq, int slot, int nsegs) { struct vring_desc *vd; struct vring_desc_extra *vdx; int i; KASSERT(1 <= nsegs); KASSERT(nsegs <= vq->vq_num); vdx = &vq->vq_descx[slot]; vd = &vq->vq_desc[slot]; KASSERT((vd->flags & virtio_rw16(sc, VRING_DESC_F_NEXT)) == 0); if ((vq->vq_indirect != NULL) && (nsegs >= MINSEG_INDIRECT) && (nsegs <= vq->vq_maxnsegs)) vdx->use_indirect = true; else vdx->use_indirect = false; if (vdx->use_indirect) { uint64_t addr; addr = vq->vq_dmamap->dm_segs[0].ds_addr + vq->vq_indirectoffset; addr += sizeof(struct vring_desc) * vq->vq_maxnsegs * slot; vd->addr = virtio_rw64(sc, addr); vd->len = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs); vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT); vd = &vq->vq_indirect[vq->vq_maxnsegs * slot]; vdx->desc_base = vd; vdx->desc_free_idx = 0; for (i = 0; i < nsegs - 1; i++) { vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT); } vd[i].flags = virtio_rw16(sc, 0); } else { if (nsegs > 1) { uint16_t s; s = vq_alloc_slot(sc, vq, nsegs - 1); if (s == VRING_DESC_CHAIN_END) { vq_free_slot(sc, vq, slot); return EAGAIN; } vd->next = virtio_rw16(sc, s); vd->flags = virtio_rw16(sc, VRING_DESC_F_NEXT); } vdx->desc_base = &vq->vq_desc[0]; vdx->desc_free_idx = slot; } return 0; } /* * enqueue: enqueue a single dmamap. */ int virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot, bus_dmamap_t dmamap, bool write) { struct vring_desc *vds; struct vring_desc_extra *vdx; uint16_t s; int i; KASSERT(dmamap->dm_nsegs > 0); vdx = &vq->vq_descx[slot]; vds = vdx->desc_base; s = vdx->desc_free_idx; KASSERT(vds != NULL); for (i = 0; i < dmamap->dm_nsegs; i++) { KASSERT(s != VRING_DESC_CHAIN_END); vds[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr); vds[s].len = virtio_rw32(sc, dmamap->dm_segs[i].ds_len); if (!write) vds[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE); if ((vds[s].flags & virtio_rw16(sc, VRING_DESC_F_NEXT)) == 0) { s = VRING_DESC_CHAIN_END; } else { s = virtio_rw16(sc, vds[s].next); } } vdx->desc_free_idx = s; return 0; } int virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot, bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len, bool write) { struct vring_desc_extra *vdx; struct vring_desc *vds; uint16_t s; vdx = &vq->vq_descx[slot]; vds = vdx->desc_base; s = vdx->desc_free_idx; KASSERT(s != VRING_DESC_CHAIN_END); KASSERT(vds != NULL); KASSERT(dmamap->dm_nsegs == 1); /* XXX */ KASSERT(dmamap->dm_segs[0].ds_len > start); KASSERT(dmamap->dm_segs[0].ds_len >= start + len); vds[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start); vds[s].len = virtio_rw32(sc, len); if (!write) vds[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE); if ((vds[s].flags & virtio_rw16(sc, VRING_DESC_F_NEXT)) == 0) { s = VRING_DESC_CHAIN_END; } else { s = virtio_rw16(sc, vds[s].next); } vdx->desc_free_idx = s; return 0; } /* * enqueue_commit: add it to the aring. */ int virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot, bool notifynow) { if (slot < 0) { mutex_enter(&vq->vq_aring_lock); goto notify; } vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE); if (vq->vq_descx[slot].use_indirect) vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE); mutex_enter(&vq->vq_aring_lock); vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] = virtio_rw16(sc, slot); notify: if (notifynow) { uint16_t o, n, t; uint16_t flags; o = virtio_rw16(sc, vq->vq_avail->idx) - 1; n = vq->vq_avail_idx; /* * Prepare for `device->CPU' (host->guest) transfer * into the buffer. This must happen before we commit * the vq->vq_avail->idx update to ensure we're not * still using the buffer in case program-prior loads * or stores in it get delayed past the store to * vq->vq_avail->idx. */ vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD); /* ensure payload is published, then avail idx */ vq_sync_aring_payload(sc, vq, BUS_DMASYNC_PREWRITE); vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx); vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE); vq->vq_queued++; if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) { vq_sync_uring_avail(sc, vq, BUS_DMASYNC_POSTREAD); t = virtio_rw16(sc, *vq->vq_avail_event) + 1; if ((uint16_t) (n - t) < (uint16_t) (n - o)) sc->sc_ops->kick(sc, vq->vq_index); } else { vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD); flags = virtio_rw16(sc, vq->vq_used->flags); if (!(flags & VRING_USED_F_NO_NOTIFY)) sc->sc_ops->kick(sc, vq->vq_index); } } mutex_exit(&vq->vq_aring_lock); return 0; } /* * enqueue_abort: rollback. */ int virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot) { struct vring_desc_extra *vdx; vdx = &vq->vq_descx[slot]; vdx->desc_free_idx = VRING_DESC_CHAIN_END; vdx->desc_base = NULL; vq_free_slot(sc, vq, slot); return 0; } /* * Dequeue a request. */ /* * dequeue: dequeue a request from uring; dmamap_sync for uring is * already done in the interrupt handler. */ int virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq, int *slotp, int *lenp) { uint16_t slot, usedidx; if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx)) return ENOENT; mutex_enter(&vq->vq_uring_lock); usedidx = vq->vq_used_idx++; mutex_exit(&vq->vq_uring_lock); usedidx %= vq->vq_num; slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id); if (vq->vq_descx[slot].use_indirect) vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE); if (slotp) *slotp = slot; if (lenp) *lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len); return 0; } /* * dequeue_commit: complete dequeue; the slot is recycled for future use. * if you forget to call this the slot will be leaked. */ int virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot) { struct vring_desc_extra *vdx; vdx = &vq->vq_descx[slot]; vdx->desc_base = NULL; vdx->desc_free_idx = VRING_DESC_CHAIN_END; vq_free_slot(sc, vq, slot); return 0; } /* * Attach a child, fill all the members. */ void virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl, uint64_t req_features, const char *feat_bits) { char buf[1024]; KASSERT(sc->sc_child == NULL); KASSERT(sc->sc_child_state == VIRTIO_NO_CHILD); sc->sc_child = child; sc->sc_ipl = ipl; virtio_negotiate_features(sc, req_features); snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features); aprint_normal(": features: %s\n", buf); aprint_naive("\n"); } int virtio_child_attach_finish(struct virtio_softc *sc, struct virtqueue *vqs, size_t nvqs, virtio_callback config_change, int req_flags) { size_t i; int r; #ifdef DIAGNOSTIC KASSERT(nvqs > 0); #define VIRTIO_ASSERT_FLAGS (VIRTIO_F_INTR_SOFTINT | VIRTIO_F_INTR_PERVQ) KASSERT((req_flags & VIRTIO_ASSERT_FLAGS) != VIRTIO_ASSERT_FLAGS); #undef VIRTIO_ASSERT_FLAGS for (i = 0; i < nvqs; i++){ KASSERT(vqs[i].vq_index == i); KASSERT(vqs[i].vq_intrhand != NULL); KASSERT(vqs[i].vq_done == NULL || vqs[i].vq_intrhand == virtio_vq_done); } #endif sc->sc_vqs = vqs; sc->sc_nvqs = nvqs; sc->sc_config_change = config_change; sc->sc_intrhand = virtio_vq_intr; sc->sc_flags = req_flags; /* set the vq address */ for (i = 0; i < nvqs; i++) { sc->sc_ops->setup_queue(sc, vqs[i].vq_index, vqs[i].vq_dmamap->dm_segs[0].ds_addr); } r = sc->sc_ops->alloc_interrupts(sc); if (r != 0) { aprint_error_dev(sc->sc_dev, "failed to allocate interrupts\n"); goto fail; } r = sc->sc_ops->setup_interrupts(sc, 0); if (r != 0) { aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n"); goto fail; } KASSERT(sc->sc_soft_ih == NULL); if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) { u_int flags = SOFTINT_NET; if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE) flags |= SOFTINT_MPSAFE; sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr, sc); if (sc->sc_soft_ih == NULL) { sc->sc_ops->free_interrupts(sc); aprint_error_dev(sc->sc_dev, "failed to establish soft interrupt\n"); goto fail; } } sc->sc_child_state = VIRTIO_CHILD_ATTACH_FINISHED; virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK); return 0; fail: if (sc->sc_soft_ih) { softint_disestablish(sc->sc_soft_ih); sc->sc_soft_ih = NULL; } sc->sc_ops->free_interrupts(sc); virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED); return 1; } void virtio_child_detach(struct virtio_softc *sc) { /* already detached */ if (sc->sc_child == NULL) return; virtio_device_reset(sc); sc->sc_ops->free_interrupts(sc); if (sc->sc_soft_ih) { softint_disestablish(sc->sc_soft_ih); sc->sc_soft_ih = NULL; } sc->sc_vqs = NULL; sc->sc_child = NULL; } void virtio_child_attach_failed(struct virtio_softc *sc) { virtio_child_detach(sc); virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED); sc->sc_child_state = VIRTIO_CHILD_ATTACH_FAILED; } bus_dma_tag_t virtio_dmat(struct virtio_softc *sc) { return sc->sc_dmat; } device_t virtio_child(struct virtio_softc *sc) { return sc->sc_child; } int virtio_intrhand(struct virtio_softc *sc) { return (*sc->sc_intrhand)(sc); } uint64_t virtio_features(struct virtio_softc *sc) { return sc->sc_active_features; } int virtio_attach_failed(struct virtio_softc *sc) { device_t self = sc->sc_dev; /* no error if its not connected, but its failed */ if (sc->sc_childdevid == 0) return 1; if (sc->sc_child == NULL) { switch (sc->sc_child_state) { case VIRTIO_CHILD_ATTACH_FAILED: aprint_error_dev(self, "virtio configuration failed\n"); break; case VIRTIO_NO_CHILD: aprint_error_dev(self, "no matching child driver; not configured\n"); break; default: /* sanity check */ aprint_error_dev(self, "virtio internal error, " "child driver is not configured\n"); break; } return 1; } /* sanity check */ if (sc->sc_child_state != VIRTIO_CHILD_ATTACH_FINISHED) { aprint_error_dev(self, "virtio internal error, child driver " "signaled OK but didn't initialize interrupts\n"); return 1; } return 0; } void virtio_print_device_type(device_t self, int id, int revision) { aprint_normal_dev(self, "%s device (id %d, rev. 0x%02x)\n", (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"), id, revision); } MODULE(MODULE_CLASS_DRIVER, virtio, NULL); #ifdef _MODULE #include "ioconf.c" #endif static int virtio_modcmd(modcmd_t cmd, void *opaque) { int error = 0; #ifdef _MODULE switch (cmd) { case MODULE_CMD_INIT: error = config_init_component(cfdriver_ioconf_virtio, cfattach_ioconf_virtio, cfdata_ioconf_virtio); break; case MODULE_CMD_FINI: error = config_fini_component(cfdriver_ioconf_virtio, cfattach_ioconf_virtio, cfdata_ioconf_virtio); break; default: error = ENOTTY; break; } #endif return error; }