/* $NetBSD: igc_mac.c,v 1.2 2023/10/04 07:35:27 rin Exp $ */ /* $OpenBSD: igc_mac.c,v 1.1 2021/10/31 14:52:57 patrick Exp $ */ /*- * Copyright 2021 Intel Corp * Copyright 2021 Rubicon Communications, LLC (Netgate) * SPDX-License-Identifier: BSD-3-Clause */ #include __KERNEL_RCSID(0, "$NetBSD: igc_mac.c,v 1.2 2023/10/04 07:35:27 rin Exp $"); #include #include /** * igc_init_mac_ops_generic - Initialize MAC function pointers * @hw: pointer to the HW structure * * Setups up the function pointers to no-op functions **/ void igc_init_mac_ops_generic(struct igc_hw *hw) { struct igc_mac_info *mac = &hw->mac; DEBUGFUNC("igc_init_mac_ops_generic"); /* General Setup */ mac->ops.init_params = igc_null_ops_generic; mac->ops.config_collision_dist = igc_config_collision_dist_generic; mac->ops.rar_set = igc_rar_set_generic; } /** * igc_null_ops_generic - No-op function, returns 0 * @hw: pointer to the HW structure **/ int igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw) { DEBUGFUNC("igc_null_ops_generic"); return IGC_SUCCESS; } /** * igc_write_vfta_generic - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: register offset in VLAN filter table * @value: register value written to VLAN filter table * * Writes value at the given offset in the register array which stores * the VLAN filter table. **/ void igc_write_vfta_generic(struct igc_hw *hw, uint32_t offset, uint32_t value) { DEBUGFUNC("igc_write_vfta_generic"); IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value); IGC_WRITE_FLUSH(hw); } /** * igc_init_rx_addrs_generic - Initialize receive address's * @hw: pointer to the HW structure * @rar_count: receive address registers * * Setup the receive address registers by setting the base receive address * register to the devices MAC address and clearing all the other receive * address registers to 0. **/ void igc_init_rx_addrs_generic(struct igc_hw *hw, uint16_t rar_count) { uint32_t i; uint8_t mac_addr[ETHER_ADDR_LEN] = {0}; DEBUGFUNC("igc_init_rx_addrs_generic"); /* Setup the receive address */ DEBUGOUT("Programming MAC Address into RAR[0]\n"); hw->mac.ops.rar_set(hw, hw->mac.addr, 0); /* Zero out the other (rar_entry_count - 1) receive addresses */ DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); for (i = 1; i < rar_count; i++) hw->mac.ops.rar_set(hw, mac_addr, i); } /** * igc_check_alt_mac_addr_generic - Check for alternate MAC addr * @hw: pointer to the HW structure * * Checks the nvm for an alternate MAC address. An alternate MAC address * can be setup by pre-boot software and must be treated like a permanent * address and must override the actual permanent MAC address. If an * alternate MAC address is found it is programmed into RAR0, replacing * the permanent address that was installed into RAR0 by the Si on reset. * This function will return SUCCESS unless it encounters an error while * reading the EEPROM. **/ int igc_check_alt_mac_addr_generic(struct igc_hw *hw) { uint32_t i; int ret_val; uint16_t offset, nvm_alt_mac_addr_offset, nvm_data; uint8_t alt_mac_addr[ETHER_ADDR_LEN]; DEBUGFUNC("igc_check_alt_mac_addr_generic"); ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); if (ret_val) return ret_val; ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, &nvm_alt_mac_addr_offset); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if ((nvm_alt_mac_addr_offset == 0xFFFF) || (nvm_alt_mac_addr_offset == 0x0000)) /* There is no Alternate MAC Address */ return IGC_SUCCESS; if (hw->bus.func == IGC_FUNC_1) nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1; for (i = 0; i < ETHER_ADDR_LEN; i += 2) { offset = nvm_alt_mac_addr_offset + (i >> 1); ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } alt_mac_addr[i] = (uint8_t)(nvm_data & 0xFF); alt_mac_addr[i + 1] = (uint8_t)(nvm_data >> 8); } /* if multicast bit is set, the alternate address will not be used */ if (alt_mac_addr[0] & 0x01) { DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); return IGC_SUCCESS; } /* We have a valid alternate MAC address, and we want to treat it the * same as the normal permanent MAC address stored by the HW into the * RAR. Do this by mapping this address into RAR0. */ hw->mac.ops.rar_set(hw, alt_mac_addr, 0); return IGC_SUCCESS; } /** * igc_rar_set_generic - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address array register at index to the address passed * in by addr. **/ int igc_rar_set_generic(struct igc_hw *hw, uint8_t *addr, uint32_t index) { uint32_t rar_low, rar_high; DEBUGFUNC("igc_rar_set_generic"); /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= IGC_RAH_AV; /* Some bridges will combine consecutive 32-bit writes into * a single burst write, which will malfunction on some parts. * The flushes avoid this. */ IGC_WRITE_REG(hw, IGC_RAL(index), rar_low); IGC_WRITE_FLUSH(hw); IGC_WRITE_REG(hw, IGC_RAH(index), rar_high); IGC_WRITE_FLUSH(hw); return IGC_SUCCESS; } /** * igc_hash_mc_addr_generic - Generate a multicast hash value * @hw: pointer to the HW structure * @mc_addr: pointer to a multicast address * * Generates a multicast address hash value which is used to determine * the multicast filter table array address and new table value. **/ int igc_hash_mc_addr_generic(struct igc_hw *hw, uint8_t *mc_addr) { uint32_t hash_value, hash_mask; uint8_t bit_shift = 0; DEBUGFUNC("igc_hash_mc_addr_generic"); /* Register count multiplied by bits per register */ hash_mask = (hw->mac.mta_reg_count * 32) - 1; /* For a mc_filter_type of 0, bit_shift is the number of left-shifts * where 0xFF would still fall within the hash mask. */ while (hash_mask >> bit_shift != 0xFF) bit_shift++; /* The portion of the address that is used for the hash table * is determined by the mc_filter_type setting. * The algorithm is such that there is a total of 8 bits of shifting. * The bit_shift for a mc_filter_type of 0 represents the number of * left-shifts where the MSB of mc_addr[5] would still fall within * the hash_mask. Case 0 does this exactly. Since there are a total * of 8 bits of shifting, then mc_addr[4] will shift right the * remaining number of bits. Thus 8 - bit_shift. The rest of the * cases are a variation of this algorithm...essentially raising the * number of bits to shift mc_addr[5] left, while still keeping the * 8-bit shifting total. * * For example, given the following Destination MAC Address and an * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), * we can see that the bit_shift for case 0 is 4. These are the hash * values resulting from each mc_filter_type... * [0] [1] [2] [3] [4] [5] * 01 AA 00 12 34 56 * LSB MSB * * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 */ switch (hw->mac.mc_filter_type) { default: case 0: break; case 1: bit_shift += 1; break; case 2: bit_shift += 2; break; case 3: bit_shift += 4; break; } hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | (((uint16_t) mc_addr[5]) << bit_shift))); return hash_value; } /** * igc_update_mc_addr_list_generic - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates entire Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. **/ void igc_update_mc_addr_list_generic(struct igc_hw *hw, uint8_t *mc_addr_list, uint32_t mc_addr_count) { uint32_t hash_value, hash_bit, hash_reg; int i; DEBUGFUNC("igc_update_mc_addr_list_generic"); /* clear mta_shadow */ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); /* update mta_shadow from mc_addr_list */ for (i = 0; (uint32_t)i < mc_addr_count; i++) { hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list); hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); hash_bit = hash_value & 0x1F; hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); mc_addr_list += (ETHER_ADDR_LEN); } /* replace the entire MTA table */ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]); IGC_WRITE_FLUSH(hw); } /** * igc_clear_hw_cntrs_base_generic - Clear base hardware counters * @hw: pointer to the HW structure * * Clears the base hardware counters by reading the counter registers. **/ void igc_clear_hw_cntrs_base_generic(struct igc_hw *hw) { DEBUGFUNC("igc_clear_hw_cntrs_base_generic"); IGC_READ_REG(hw, IGC_CRCERRS); IGC_READ_REG(hw, IGC_ALGNERRC); IGC_READ_REG(hw, IGC_MPC); IGC_READ_REG(hw, IGC_SCC); IGC_READ_REG(hw, IGC_ECOL); IGC_READ_REG(hw, IGC_MCC); IGC_READ_REG(hw, IGC_LATECOL); IGC_READ_REG(hw, IGC_COLC); IGC_READ_REG(hw, IGC_RERC); IGC_READ_REG(hw, IGC_DC); IGC_READ_REG(hw, IGC_TNCRS); IGC_READ_REG(hw, IGC_HTDPMC); IGC_READ_REG(hw, IGC_RLEC); IGC_READ_REG(hw, IGC_XONRXC); IGC_READ_REG(hw, IGC_XONTXC); IGC_READ_REG(hw, IGC_XOFFRXC); IGC_READ_REG(hw, IGC_XOFFTXC); IGC_READ_REG(hw, IGC_FCRUC); IGC_READ_REG(hw, IGC_PRC64); IGC_READ_REG(hw, IGC_PRC127); IGC_READ_REG(hw, IGC_PRC255); IGC_READ_REG(hw, IGC_PRC511); IGC_READ_REG(hw, IGC_PRC1023); IGC_READ_REG(hw, IGC_PRC1522); IGC_READ_REG(hw, IGC_GPRC); IGC_READ_REG(hw, IGC_BPRC); IGC_READ_REG(hw, IGC_MPRC); IGC_READ_REG(hw, IGC_GPTC); IGC_READ_REG(hw, IGC_GORCL); IGC_READ_REG(hw, IGC_GORCH); IGC_READ_REG(hw, IGC_GOTCL); IGC_READ_REG(hw, IGC_GOTCH); IGC_READ_REG(hw, IGC_RNBC); IGC_READ_REG(hw, IGC_RUC); IGC_READ_REG(hw, IGC_RFC); IGC_READ_REG(hw, IGC_ROC); IGC_READ_REG(hw, IGC_RJC); IGC_READ_REG(hw, IGC_MGTPRC); IGC_READ_REG(hw, IGC_MGTPDC); IGC_READ_REG(hw, IGC_MGTPTC); IGC_READ_REG(hw, IGC_TORL); IGC_READ_REG(hw, IGC_TORH); IGC_READ_REG(hw, IGC_TOTL); IGC_READ_REG(hw, IGC_TOTH); IGC_READ_REG(hw, IGC_TPR); IGC_READ_REG(hw, IGC_TPT); IGC_READ_REG(hw, IGC_PTC64); IGC_READ_REG(hw, IGC_PTC127); IGC_READ_REG(hw, IGC_PTC255); IGC_READ_REG(hw, IGC_PTC511); IGC_READ_REG(hw, IGC_PTC1023); IGC_READ_REG(hw, IGC_PTC1522); IGC_READ_REG(hw, IGC_MPTC); IGC_READ_REG(hw, IGC_BPTC); IGC_READ_REG(hw, IGC_TSCTC); IGC_READ_REG(hw, IGC_IAC); IGC_READ_REG(hw, IGC_RXDMTC); IGC_READ_REG(hw, IGC_HGORCL); IGC_READ_REG(hw, IGC_HGORCH); IGC_READ_REG(hw, IGC_HGOTCL); IGC_READ_REG(hw, IGC_HGOTCH); IGC_READ_REG(hw, IGC_LENERRS); IGC_READ_REG(hw, IGC_TLPIC); IGC_READ_REG(hw, IGC_RLPIC); } /** * igc_setup_link_generic - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ int igc_setup_link_generic(struct igc_hw *hw) { int ret_val; DEBUGFUNC("igc_setup_link_generic"); /* In the case of the phy reset being blocked, we already have a link. * We do not need to set it up again. */ if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) return IGC_SUCCESS; /* If requested flow control is set to default, set flow control * for both 'rx' and 'tx' pause frames. */ if (hw->fc.requested_mode == igc_fc_default) { hw->fc.requested_mode = igc_fc_full; } /* Save off the requested flow control mode for use later. Depending * on the link partner's capabilities, we may or may not use this mode. */ hw->fc.current_mode = hw->fc.requested_mode; DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); /* Call the necessary media_type subroutine to configure the link. */ ret_val = hw->mac.ops.setup_physical_interface(hw); if (ret_val) return ret_val; /* Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE); IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH); IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW); IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time); return igc_set_fc_watermarks_generic(hw); } /** * igc_config_collision_dist_generic - Configure collision distance * @hw: pointer to the HW structure * * Configures the collision distance to the default value and is used * during link setup. **/ void igc_config_collision_dist_generic(struct igc_hw *hw) { uint32_t tctl; DEBUGFUNC("igc_config_collision_dist_generic"); tctl = IGC_READ_REG(hw, IGC_TCTL); tctl &= ~IGC_TCTL_COLD; tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT; IGC_WRITE_REG(hw, IGC_TCTL, tctl); IGC_WRITE_FLUSH(hw); } /** * igc_set_fc_watermarks_generic - Set flow control high/low watermarks * @hw: pointer to the HW structure * * Sets the flow control high/low threshold (watermark) registers. If * flow control XON frame transmission is enabled, then set XON frame * transmission as well. **/ int igc_set_fc_watermarks_generic(struct igc_hw *hw) { uint32_t fcrtl = 0, fcrth = 0; DEBUGFUNC("igc_set_fc_watermarks_generic"); /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames is not enabled, then these * registers will be set to 0. */ if (hw->fc.current_mode & igc_fc_tx_pause) { /* We need to set up the Receive Threshold high and low water * marks as well as (optionally) enabling the transmission of * XON frames. */ fcrtl = hw->fc.low_water; if (hw->fc.send_xon) fcrtl |= IGC_FCRTL_XONE; fcrth = hw->fc.high_water; } IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl); IGC_WRITE_REG(hw, IGC_FCRTH, fcrth); return IGC_SUCCESS; } /** * igc_force_mac_fc_generic - Force the MAC's flow control settings * @hw: pointer to the HW structure * * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the * device control register to reflect the adapter settings. TFCE and RFCE * need to be explicitly set by software when a copper PHY is used because * autonegotiation is managed by the PHY rather than the MAC. Software must * also configure these bits when link is forced on a fiber connection. **/ int igc_force_mac_fc_generic(struct igc_hw *hw) { uint32_t ctrl; DEBUGFUNC("igc_force_mac_fc_generic"); ctrl = IGC_READ_REG(hw, IGC_CTRL); /* Because we didn't get link via the internal auto-negotiation * mechanism (we either forced link or we got link via PHY * auto-neg), we have to manually enable/disable transmit an * receive flow control. * * The "Case" statement below enables/disable flow control * according to the "hw->fc.current_mode" parameter. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause * frames but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * frames but we do not receive pause frames). * 3: Both Rx and Tx flow control (symmetric) is enabled. * other: No other values should be possible at this point. */ DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); switch (hw->fc.current_mode) { case igc_fc_none: ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE)); break; case igc_fc_rx_pause: ctrl &= (~IGC_CTRL_TFCE); ctrl |= IGC_CTRL_RFCE; break; case igc_fc_tx_pause: ctrl &= (~IGC_CTRL_RFCE); ctrl |= IGC_CTRL_TFCE; break; case igc_fc_full: ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE); break; default: DEBUGOUT("Flow control param set incorrectly\n"); return -IGC_ERR_CONFIG; } IGC_WRITE_REG(hw, IGC_CTRL, ctrl); return IGC_SUCCESS; } /** * igc_config_fc_after_link_up_generic - Configures flow control after link * @hw: pointer to the HW structure * * Checks the status of auto-negotiation after link up to ensure that the * speed and duplex were not forced. If the link needed to be forced, then * flow control needs to be forced also. If auto-negotiation is enabled * and did not fail, then we configure flow control based on our link * partner. **/ int igc_config_fc_after_link_up_generic(struct igc_hw *hw) { struct igc_mac_info *mac = &hw->mac; uint16_t mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; uint16_t speed, duplex; int ret_val = IGC_SUCCESS; DEBUGFUNC("igc_config_fc_after_link_up_generic"); if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } /* Check for the case where we have copper media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if (mac->autoneg) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ ret_val = hw->phy.ops.read_reg(hw, MII_BMSR, &mii_status_reg); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg(hw, MII_BMSR, &mii_status_reg); if (ret_val) return ret_val; if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) return ret_val; /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement * Register (Address 4) and the Auto_Negotiation Base * Page Ability Register (Address 5) to determine how * flow control was negotiated. */ ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); if (ret_val) return ret_val; /* Two bits in the Auto Negotiation Advertisement Register * (Address 4) and two bits in the Auto Negotiation Base * Page Ability Register (Address 5) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | igc_fc_none * 0 | 1 | 0 | DC | igc_fc_none * 0 | 1 | 1 | 0 | igc_fc_none * 0 | 1 | 1 | 1 | igc_fc_tx_pause * 1 | 0 | 0 | DC | igc_fc_none * 1 | DC | 1 | DC | igc_fc_full * 1 | 1 | 0 | 0 | igc_fc_none * 1 | 1 | 0 | 1 | igc_fc_rx_pause * * Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | IGC_fc_full * */ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise Rx * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == igc_fc_full) hw->fc.current_mode = igc_fc_full; else hw->fc.current_mode = igc_fc_rx_pause; } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | igc_fc_tx_pause */ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc.current_mode = igc_fc_tx_pause; } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | igc_fc_rx_pause */ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc.current_mode = igc_fc_rx_pause; } else { /* Per the IEEE spec, at this point flow control * should be disabled. */ hw->fc.current_mode = igc_fc_none; DEBUGOUT("Flow Control = NONE.\n"); } /* Now we need to do one last check... If we auto- * negotiated to HALF DUPLEX, flow control should not be * enabled per IEEE 802.3 spec. */ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); if (ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); return ret_val; } if (duplex == HALF_DUPLEX) hw->fc.current_mode = igc_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = igc_force_mac_fc_generic(hw); if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } } return IGC_SUCCESS; } /** * igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * Read the status register for the current speed/duplex and store the current * speed and duplex for copper connections. **/ int igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, uint16_t *speed, uint16_t *duplex) { uint32_t status; DEBUGFUNC("igc_get_speed_and_duplex_copper_generic"); status = IGC_READ_REG(hw, IGC_STATUS); if (status & IGC_STATUS_SPEED_1000) { /* For I225, STATUS will indicate 1G speed in both 1 Gbps * and 2.5 Gbps link modes. An additional bit is used * to differentiate between 1 Gbps and 2.5 Gbps. */ if ((hw->mac.type == igc_i225) && (status & IGC_STATUS_SPEED_2500)) { *speed = SPEED_2500; DEBUGOUT("2500 Mbs, "); } else { *speed = SPEED_1000; DEBUGOUT("1000 Mbs, "); } } else if (status & IGC_STATUS_SPEED_100) { *speed = SPEED_100; DEBUGOUT("100 Mbs, "); } else { *speed = SPEED_10; DEBUGOUT("10 Mbs, "); } if (status & IGC_STATUS_FD) { *duplex = FULL_DUPLEX; DEBUGOUT("Full Duplex\n"); } else { *duplex = HALF_DUPLEX; DEBUGOUT("Half Duplex\n"); } return IGC_SUCCESS; } /** * igc_put_hw_semaphore_generic - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used to access the PHY or NVM **/ void igc_put_hw_semaphore_generic(struct igc_hw *hw) { uint32_t swsm; DEBUGFUNC("igc_put_hw_semaphore_generic"); swsm = IGC_READ_REG(hw, IGC_SWSM); swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI); IGC_WRITE_REG(hw, IGC_SWSM, swsm); } /** * igc_get_auto_rd_done_generic - Check for auto read completion * @hw: pointer to the HW structure * * Check EEPROM for Auto Read done bit. **/ int igc_get_auto_rd_done_generic(struct igc_hw *hw) { int i = 0; DEBUGFUNC("igc_get_auto_rd_done_generic"); while (i < AUTO_READ_DONE_TIMEOUT) { if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD) break; msec_delay(1); i++; } if (i == AUTO_READ_DONE_TIMEOUT) { DEBUGOUT("Auto read by HW from NVM has not completed.\n"); return -IGC_ERR_RESET; } return IGC_SUCCESS; } /** * igc_disable_pcie_master_generic - Disables PCI-express master access * @hw: pointer to the HW structure * * Returns IGC_SUCCESS if successful, else returns -10 * (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused * the master requests to be disabled. * * Disables PCI-Express master access and verifies there are no pending * requests. **/ int igc_disable_pcie_master_generic(struct igc_hw *hw) { uint32_t ctrl; int timeout = MASTER_DISABLE_TIMEOUT; DEBUGFUNC("igc_disable_pcie_master_generic"); ctrl = IGC_READ_REG(hw, IGC_CTRL); ctrl |= IGC_CTRL_GIO_MASTER_DISABLE; IGC_WRITE_REG(hw, IGC_CTRL, ctrl); while (timeout) { if (!(IGC_READ_REG(hw, IGC_STATUS) & IGC_STATUS_GIO_MASTER_ENABLE)) break; DELAY(100); timeout--; } if (!timeout) { DEBUGOUT("Master requests are pending.\n"); return -IGC_ERR_MASTER_REQUESTS_PENDING; } return IGC_SUCCESS; }