/* $NetBSD: if_tl.c,v 1.125 2022/09/02 23:48:10 thorpej Exp $ */ /* * Copyright (c) 1997 Manuel Bouyer. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Texas Instruments ThunderLAN ethernet controller * ThunderLAN Programmer's Guide (TI Literature Number SPWU013A) * available from www.ti.com */ #include __KERNEL_RCSID(0, "$NetBSD: if_tl.c,v 1.125 2022/09/02 23:48:10 thorpej Exp $"); #undef TLDEBUG #define TL_PRIV_STATS #undef TLDEBUG_RX #undef TLDEBUG_TX #undef TLDEBUG_ADDR #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include /* only for declaration of wakeup() used by vm.h */ #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #endif #if defined(__NetBSD__) #include #if defined(INET) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* __NetBSD__ */ /* number of transmit/receive buffers */ #ifndef TL_NBUF #define TL_NBUF 32 #endif static int tl_pci_match(device_t, cfdata_t, void *); static void tl_pci_attach(device_t, device_t, void *); static int tl_intr(void *); static int tl_ifioctl(struct ifnet *, ioctl_cmd_t, void *); static void tl_ifwatchdog(struct ifnet *); static bool tl_shutdown(device_t, int); static void tl_ifstart(struct ifnet *); static void tl_reset(tl_softc_t *); static int tl_init(struct ifnet *); static void tl_stop(struct ifnet *, int); static void tl_restart(void *); static int tl_add_RxBuff(tl_softc_t *, struct Rx_list *, struct mbuf *); static void tl_read_stats(tl_softc_t *); static void tl_ticks(void *); static int tl_multicast_hash(uint8_t *); static void tl_addr_filter(tl_softc_t *); static uint32_t tl_intreg_read(tl_softc_t *, uint32_t); static void tl_intreg_write(tl_softc_t *, uint32_t, uint32_t); static uint8_t tl_intreg_read_byte(tl_softc_t *, uint32_t); static void tl_intreg_write_byte(tl_softc_t *, uint32_t, uint8_t); void tl_mii_sync(struct tl_softc *); void tl_mii_sendbits(struct tl_softc *, uint32_t, int); #if defined(TLDEBUG_RX) static void ether_printheader(struct ether_header *); #endif int tl_mii_read(device_t, int, int, uint16_t *); int tl_mii_write(device_t, int, int, uint16_t); void tl_statchg(struct ifnet *); /* I2C glue */ static int tl_i2c_send_start(void *, int); static int tl_i2c_send_stop(void *, int); static int tl_i2c_initiate_xfer(void *, i2c_addr_t, int); static int tl_i2c_read_byte(void *, uint8_t *, int); static int tl_i2c_write_byte(void *, uint8_t, int); /* I2C bit-bang glue */ static void tl_i2cbb_set_bits(void *, uint32_t); static void tl_i2cbb_set_dir(void *, uint32_t); static uint32_t tl_i2cbb_read(void *); static const struct i2c_bitbang_ops tl_i2cbb_ops = { tl_i2cbb_set_bits, tl_i2cbb_set_dir, tl_i2cbb_read, { TL_NETSIO_EDATA, /* SDA */ TL_NETSIO_ECLOCK, /* SCL */ TL_NETSIO_ETXEN, /* SDA is output */ 0, /* SDA is input */ } }; static inline void netsio_clr(tl_softc_t *, uint8_t); static inline void netsio_set(tl_softc_t *, uint8_t); static inline uint8_t netsio_read(tl_softc_t *, uint8_t); static inline void netsio_clr(tl_softc_t *sc, uint8_t bits) { tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio, tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) & (~bits)); } static inline void netsio_set(tl_softc_t *sc, uint8_t bits) { tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio, tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) | bits); } static inline uint8_t netsio_read(tl_softc_t *sc, uint8_t bits) { return tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) & bits; } CFATTACH_DECL_NEW(tl, sizeof(tl_softc_t), tl_pci_match, tl_pci_attach, NULL, NULL); static const struct tl_product_desc tl_compaq_products[] = { { PCI_PRODUCT_COMPAQ_N100TX, TLPHY_MEDIA_NO_10_T, "Compaq Netelligent 10/100 TX" }, { PCI_PRODUCT_COMPAQ_INT100TX, TLPHY_MEDIA_NO_10_T, "Integrated Compaq Netelligent 10/100 TX" }, { PCI_PRODUCT_COMPAQ_N10T, TLPHY_MEDIA_10_5, "Compaq Netelligent 10 T" }, { PCI_PRODUCT_COMPAQ_N10T2, TLPHY_MEDIA_10_2, "Compaq Netelligent 10 T/2 UTP/Coax" }, { PCI_PRODUCT_COMPAQ_IntNF3P, TLPHY_MEDIA_10_2, "Compaq Integrated NetFlex 3/P" }, { PCI_PRODUCT_COMPAQ_IntPL100TX, TLPHY_MEDIA_10_2 |TLPHY_MEDIA_NO_10_T, "Compaq ProLiant Integrated Netelligent 10/100 TX" }, { PCI_PRODUCT_COMPAQ_DPNet100TX, TLPHY_MEDIA_10_5 |TLPHY_MEDIA_NO_10_T, "Compaq Dual Port Netelligent 10/100 TX" }, { PCI_PRODUCT_COMPAQ_DP4000, TLPHY_MEDIA_10_5 | TLPHY_MEDIA_NO_10_T, "Compaq Deskpro 4000 5233MMX" }, { PCI_PRODUCT_COMPAQ_NF3P_BNC, TLPHY_MEDIA_10_2, "Compaq NetFlex 3/P w/ BNC" }, { PCI_PRODUCT_COMPAQ_NF3P, TLPHY_MEDIA_10_5, "Compaq NetFlex 3/P" }, { 0, 0, NULL }, }; static const struct tl_product_desc tl_ti_products[] = { /* * Built-in Ethernet on the TI TravelMate 5000 * docking station; better product description? */ { PCI_PRODUCT_TI_TLAN, 0, "Texas Instruments ThunderLAN" }, { 0, 0, NULL }, }; struct tl_vendor_desc { uint32_t tv_vendor; const struct tl_product_desc *tv_products; }; const struct tl_vendor_desc tl_vendors[] = { { PCI_VENDOR_COMPAQ, tl_compaq_products }, { PCI_VENDOR_TI, tl_ti_products }, { 0, NULL }, }; static const struct tl_product_desc *tl_lookup_product(uint32_t); static const struct tl_product_desc * tl_lookup_product(uint32_t id) { const struct tl_product_desc *tp; const struct tl_vendor_desc *tv; for (tv = tl_vendors; tv->tv_products != NULL; tv++) if (PCI_VENDOR(id) == tv->tv_vendor) break; if ((tp = tv->tv_products) == NULL) return NULL; for (; tp->tp_desc != NULL; tp++) if (PCI_PRODUCT(id) == tp->tp_product) break; if (tp->tp_desc == NULL) return NULL; return tp; } static int tl_pci_match(device_t parent, cfdata_t cf, void *aux) { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (tl_lookup_product(pa->pa_id) != NULL) return 1; return 0; } static void tl_pci_attach(device_t parent, device_t self, void *aux) { tl_softc_t *sc = device_private(self); struct pci_attach_args * const pa = (struct pci_attach_args *)aux; const struct tl_product_desc *tp; struct ifnet * const ifp = &sc->tl_if; struct mii_data * const mii = &sc->tl_mii; bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; pci_intr_handle_t intrhandle; const char *intrstr; int ioh_valid, memh_valid; int reg_io, reg_mem; pcireg_t reg10, reg14; pcireg_t csr; char intrbuf[PCI_INTRSTR_LEN]; sc->sc_dev = self; aprint_normal("\n"); callout_init(&sc->tl_tick_ch, 0); callout_init(&sc->tl_restart_ch, 0); tp = tl_lookup_product(pa->pa_id); if (tp == NULL) panic("%s: impossible", __func__); sc->tl_product = tp; /* * Map the card space. First we have to find the I/O and MEM * registers. I/O is supposed to be at 0x10, MEM at 0x14, * but some boards (Compaq Netflex 3/P PCI) seem to have it reversed. * The ThunderLAN manual is not consistent about this either (there * are both cases in code examples). */ reg10 = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x10); reg14 = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x14); if (PCI_MAPREG_TYPE(reg10) == PCI_MAPREG_TYPE_IO) reg_io = 0x10; else if (PCI_MAPREG_TYPE(reg14) == PCI_MAPREG_TYPE_IO) reg_io = 0x14; else reg_io = 0; if (PCI_MAPREG_TYPE(reg10) == PCI_MAPREG_TYPE_MEM) reg_mem = 0x10; else if (PCI_MAPREG_TYPE(reg14) == PCI_MAPREG_TYPE_MEM) reg_mem = 0x14; else reg_mem = 0; if (reg_io != 0) ioh_valid = (pci_mapreg_map(pa, reg_io, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); else ioh_valid = 0; if (reg_mem != 0) memh_valid = (pci_mapreg_map(pa, PCI_CBMA, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, NULL) == 0); else memh_valid = 0; if (ioh_valid) { sc->tl_bustag = iot; sc->tl_bushandle = ioh; } else if (memh_valid) { sc->tl_bustag = memt; sc->tl_bushandle = memh; } else { aprint_error_dev(self, "unable to map device registers\n"); return; } sc->tl_dmatag = pa->pa_dmat; /* Enable the device. */ csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr | PCI_COMMAND_MASTER_ENABLE); aprint_normal_dev(self, "%s\n", tp->tp_desc); tl_reset(sc); /* fill in the i2c tag */ iic_tag_init(&sc->sc_i2c); sc->sc_i2c.ic_cookie = sc; sc->sc_i2c.ic_send_start = tl_i2c_send_start; sc->sc_i2c.ic_send_stop = tl_i2c_send_stop; sc->sc_i2c.ic_initiate_xfer = tl_i2c_initiate_xfer; sc->sc_i2c.ic_read_byte = tl_i2c_read_byte; sc->sc_i2c.ic_write_byte = tl_i2c_write_byte; #ifdef TLDEBUG aprint_debug_dev(self, "default values of INTreg: 0x%x\n", tl_intreg_read(sc, TL_INT_Defaults)); #endif /* read mac addr */ if (seeprom_bootstrap_read(&sc->sc_i2c, 0x50, 0x83, 256 /* 2kbit */, sc->tl_enaddr, ETHER_ADDR_LEN)) { aprint_error_dev(self, "error reading Ethernet address\n"); return; } aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(sc->tl_enaddr)); /* Map and establish interrupts */ if (pci_intr_map(pa, &intrhandle)) { aprint_error_dev(self, "couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf)); sc->tl_if.if_softc = sc; sc->tl_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET, tl_intr, sc, device_xname(self)); if (sc->tl_ih == NULL) { aprint_error_dev(self, "couldn't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); /* init these pointers, so that tl_shutdown won't try to read them */ sc->Rx_list = NULL; sc->Tx_list = NULL; /* allocate DMA-safe memory for control structs */ if (bus_dmamem_alloc(sc->tl_dmatag, PAGE_SIZE, 0, PAGE_SIZE, &sc->ctrl_segs, 1, &sc->ctrl_nsegs, BUS_DMA_NOWAIT) != 0 || bus_dmamem_map(sc->tl_dmatag, &sc->ctrl_segs, sc->ctrl_nsegs, PAGE_SIZE, (void **)&sc->ctrl, BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0) { aprint_error_dev(self, "can't allocate DMA memory for lists\n"); return; } /* * Initialize our media structures and probe the MII. * * Note that we don't care about the media instance. We * are expecting to have multiple PHYs on the 10/100 cards, * and on those cards we exclude the internal PHY from providing * 10baseT. By ignoring the instance, it allows us to not have * to specify it on the command line when switching media. */ mii->mii_ifp = ifp; mii->mii_readreg = tl_mii_read; mii->mii_writereg = tl_mii_write; mii->mii_statchg = tl_statchg; sc->tl_ec.ec_mii = mii; ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, ether_mediastatus); mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* * We can support 802.1Q VLAN-sized frames. */ sc->tl_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = tl_ifioctl; ifp->if_start = tl_ifstart; ifp->if_watchdog = tl_ifwatchdog; ifp->if_init = tl_init; ifp->if_stop = tl_stop; ifp->if_timer = 0; IFQ_SET_READY(&ifp->if_snd); if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(&(sc)->tl_if, (sc)->tl_enaddr); /* * Add shutdown hook so that DMA is disabled prior to reboot. * Not doing reboot before the driver initializes. */ if (pmf_device_register1(self, NULL, NULL, tl_shutdown)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); rnd_attach_source(&sc->rnd_source, device_xname(self), RND_TYPE_NET, RND_FLAG_DEFAULT); } static void tl_reset(tl_softc_t *sc) { int i; /* read stats */ if (sc->tl_if.if_flags & IFF_RUNNING) { callout_stop(&sc->tl_tick_ch); tl_read_stats(sc); } /* Reset adapter */ TL_HR_WRITE(sc, TL_HOST_CMD, TL_HR_READ(sc, TL_HOST_CMD) | HOST_CMD_Ad_Rst); DELAY(100000); /* Disable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff); /* setup aregs & hash */ for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4) tl_intreg_write(sc, i, 0); #ifdef TLDEBUG_ADDR printf("Areg & hash registers: \n"); for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4) printf(" reg %x: %x\n", i, tl_intreg_read(sc, i)); #endif /* Setup NetConfig */ tl_intreg_write(sc, TL_INT_NetConfig, TL_NETCONFIG_1F | TL_NETCONFIG_1chn | TL_NETCONFIG_PHY_EN); /* Bsize: accept default */ /* TX commit in Acommit: accept default */ /* Load Ld_tmr and Ld_thr */ /* Ld_tmr = 3 */ TL_HR_WRITE(sc, TL_HOST_CMD, 0x3 | HOST_CMD_LdTmr); /* Ld_thr = 0 */ TL_HR_WRITE(sc, TL_HOST_CMD, 0x0 | HOST_CMD_LdThr); /* Unreset MII */ netsio_set(sc, TL_NETSIO_NMRST); DELAY(100000); sc->tl_mii.mii_media_status &= ~IFM_ACTIVE; } static bool tl_shutdown(device_t self, int howto) { tl_softc_t *sc = device_private(self); struct ifnet *ifp = &sc->tl_if; tl_stop(ifp, 1); return true; } static void tl_stop(struct ifnet *ifp, int disable) { tl_softc_t *sc = ifp->if_softc; struct Tx_list *Tx; int i; if ((ifp->if_flags & IFF_RUNNING) == 0) return; /* disable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff); /* stop TX and RX channels */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_STOP | HOST_CMD_RT | HOST_CMD_Nes); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_STOP); DELAY(100000); /* stop statistics reading loop, read stats */ callout_stop(&sc->tl_tick_ch); tl_read_stats(sc); /* Down the MII. */ mii_down(&sc->tl_mii); /* deallocate memory allocations */ if (sc->Rx_list) { for (i = 0; i< TL_NBUF; i++) { if (sc->Rx_list[i].m) { bus_dmamap_unload(sc->tl_dmatag, sc->Rx_list[i].m_dmamap); m_freem(sc->Rx_list[i].m); } bus_dmamap_destroy(sc->tl_dmatag, sc->Rx_list[i].m_dmamap); sc->Rx_list[i].m = NULL; } free(sc->Rx_list, M_DEVBUF); sc->Rx_list = NULL; bus_dmamap_unload(sc->tl_dmatag, sc->Rx_dmamap); bus_dmamap_destroy(sc->tl_dmatag, sc->Rx_dmamap); sc->hw_Rx_list = NULL; while ((Tx = sc->active_Tx) != NULL) { Tx->hw_list->stat = 0; bus_dmamap_unload(sc->tl_dmatag, Tx->m_dmamap); bus_dmamap_destroy(sc->tl_dmatag, Tx->m_dmamap); m_freem(Tx->m); sc->active_Tx = Tx->next; Tx->next = sc->Free_Tx; sc->Free_Tx = Tx; } sc->last_Tx = NULL; free(sc->Tx_list, M_DEVBUF); sc->Tx_list = NULL; bus_dmamap_unload(sc->tl_dmatag, sc->Tx_dmamap); bus_dmamap_destroy(sc->tl_dmatag, sc->Tx_dmamap); sc->hw_Tx_list = NULL; } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; sc->tl_mii.mii_media_status &= ~IFM_ACTIVE; } static void tl_restart(void *v) { tl_init(v); } static int tl_init(struct ifnet *ifp) { tl_softc_t *sc = ifp->if_softc; int i, s, error; bus_size_t boundary; prop_number_t prop_boundary; const char *errstring; char *nullbuf; s = splnet(); /* cancel any pending IO */ tl_stop(ifp, 1); tl_reset(sc); if ((sc->tl_if.if_flags & IFF_UP) == 0) { splx(s); return 0; } /* Set various register to reasonable value */ /* setup NetCmd in promisc mode if needed */ i = (ifp->if_flags & IFF_PROMISC) ? TL_NETCOMMAND_CAF : 0; tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd, TL_NETCOMMAND_NRESET | TL_NETCOMMAND_NWRAP | i); /* Max receive size : MCLBYTES */ tl_intreg_write_byte(sc, TL_INT_MISC + TL_MISC_MaxRxL, MCLBYTES & 0xff); tl_intreg_write_byte(sc, TL_INT_MISC + TL_MISC_MaxRxH, (MCLBYTES >> 8) & 0xff); /* init MAC addr */ for (i = 0; i < ETHER_ADDR_LEN; i++) tl_intreg_write_byte(sc, TL_INT_Areg0 + i , sc->tl_enaddr[i]); /* add multicast filters */ tl_addr_filter(sc); #ifdef TLDEBUG_ADDR printf("Wrote Mac addr, Areg & hash registers are now: \n"); for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4) printf(" reg %x: %x\n", i, tl_intreg_read(sc, i)); #endif /* Pre-allocate receivers mbuf, make the lists */ sc->Rx_list = malloc(sizeof(struct Rx_list) * TL_NBUF, M_DEVBUF, M_NOWAIT | M_ZERO); sc->Tx_list = malloc(sizeof(struct Tx_list) * TL_NBUF, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->Rx_list == NULL || sc->Tx_list == NULL) { errstring = "out of memory for lists"; error = ENOMEM; goto bad; } /* * Some boards (Set Engineering GFE) do not permit DMA transfers * across page boundaries. */ prop_boundary = prop_dictionary_get(device_properties(sc->sc_dev), "tl-dma-page-boundary"); if (prop_boundary != NULL) { KASSERT(prop_object_type(prop_boundary) == PROP_TYPE_NUMBER); boundary = (bus_size_t)prop_number_unsigned_value(prop_boundary); } else { boundary = 0; } error = bus_dmamap_create(sc->tl_dmatag, sizeof(struct tl_Rx_list) * TL_NBUF, 1, sizeof(struct tl_Rx_list) * TL_NBUF, 0, BUS_DMA_WAITOK, &sc->Rx_dmamap); if (error == 0) error = bus_dmamap_create(sc->tl_dmatag, sizeof(struct tl_Tx_list) * TL_NBUF, 1, sizeof(struct tl_Tx_list) * TL_NBUF, boundary, BUS_DMA_WAITOK, &sc->Tx_dmamap); if (error == 0) error = bus_dmamap_create(sc->tl_dmatag, ETHER_MIN_TX, 1, ETHER_MIN_TX, boundary, BUS_DMA_WAITOK, &sc->null_dmamap); if (error) { errstring = "can't allocate DMA maps for lists"; goto bad; } memset(sc->ctrl, 0, PAGE_SIZE); sc->hw_Rx_list = (void *)sc->ctrl; sc->hw_Tx_list = (void *)(sc->ctrl + sizeof(struct tl_Rx_list) * TL_NBUF); nullbuf = sc->ctrl + sizeof(struct tl_Rx_list) * TL_NBUF + sizeof(struct tl_Tx_list) * TL_NBUF; error = bus_dmamap_load(sc->tl_dmatag, sc->Rx_dmamap, sc->hw_Rx_list, sizeof(struct tl_Rx_list) * TL_NBUF, NULL, BUS_DMA_WAITOK); if (error == 0) error = bus_dmamap_load(sc->tl_dmatag, sc->Tx_dmamap, sc->hw_Tx_list, sizeof(struct tl_Tx_list) * TL_NBUF, NULL, BUS_DMA_WAITOK); if (error == 0) error = bus_dmamap_load(sc->tl_dmatag, sc->null_dmamap, nullbuf, ETHER_MIN_TX, NULL, BUS_DMA_WAITOK); if (error) { errstring = "can't DMA map DMA memory for lists"; goto bad; } for (i = 0; i < TL_NBUF; i++) { error = bus_dmamap_create(sc->tl_dmatag, MCLBYTES, 1, MCLBYTES, boundary, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &sc->Rx_list[i].m_dmamap); if (error == 0) { error = bus_dmamap_create(sc->tl_dmatag, MCLBYTES, TL_NSEG, MCLBYTES, boundary, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &sc->Tx_list[i].m_dmamap); } if (error) { errstring = "can't allocate DMA maps for mbufs"; goto bad; } sc->Rx_list[i].hw_list = &sc->hw_Rx_list[i]; sc->Rx_list[i].hw_listaddr = sc->Rx_dmamap->dm_segs[0].ds_addr + sizeof(struct tl_Rx_list) * i; sc->Tx_list[i].hw_list = &sc->hw_Tx_list[i]; sc->Tx_list[i].hw_listaddr = sc->Tx_dmamap->dm_segs[0].ds_addr + sizeof(struct tl_Tx_list) * i; if (tl_add_RxBuff(sc, &sc->Rx_list[i], NULL) == 0) { errstring = "out of mbuf for receive list"; error = ENOMEM; goto bad; } if (i > 0) { /* chain the list */ sc->Rx_list[i - 1].next = &sc->Rx_list[i]; sc->hw_Rx_list[i - 1].fwd = htole32(sc->Rx_list[i].hw_listaddr); sc->Tx_list[i - 1].next = &sc->Tx_list[i]; } } sc->hw_Rx_list[TL_NBUF - 1].fwd = 0; sc->Rx_list[TL_NBUF - 1].next = NULL; sc->hw_Tx_list[TL_NBUF - 1].fwd = 0; sc->Tx_list[TL_NBUF - 1].next = NULL; sc->active_Rx = &sc->Rx_list[0]; sc->last_Rx = &sc->Rx_list[TL_NBUF - 1]; sc->active_Tx = sc->last_Tx = NULL; sc->Free_Tx = &sc->Tx_list[0]; bus_dmamap_sync(sc->tl_dmatag, sc->Rx_dmamap, 0, sizeof(struct tl_Rx_list) * TL_NBUF, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0, sizeof(struct tl_Tx_list) * TL_NBUF, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->tl_dmatag, sc->null_dmamap, 0, ETHER_MIN_TX, BUS_DMASYNC_PREWRITE); /* set media */ if ((error = mii_mediachg(&sc->tl_mii)) == ENXIO) error = 0; else if (error != 0) { errstring = "could not set media"; goto bad; } /* start ticks calls */ callout_reset(&sc->tl_tick_ch, hz, tl_ticks, sc); /* write address of Rx list and enable interrupts */ TL_HR_WRITE(sc, TL_HOST_CH_PARM, sc->Rx_list[0].hw_listaddr); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO | HOST_CMD_RT | HOST_CMD_Nes | HOST_CMD_IntOn); sc->tl_if.if_flags |= IFF_RUNNING; sc->tl_if.if_flags &= ~IFF_OACTIVE; splx(s); return 0; bad: printf("%s: %s\n", device_xname(sc->sc_dev), errstring); splx(s); return error; } static uint32_t tl_intreg_read(tl_softc_t *sc, uint32_t reg) { TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, reg & TL_HOST_DIOADR_MASK); return TL_HR_READ(sc, TL_HOST_DIO_DATA); } static uint8_t tl_intreg_read_byte(tl_softc_t *sc, uint32_t reg) { TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, (reg & (~0x07)) & TL_HOST_DIOADR_MASK); return TL_HR_READ_BYTE(sc, TL_HOST_DIO_DATA + (reg & 0x07)); } static void tl_intreg_write(tl_softc_t *sc, uint32_t reg, uint32_t val) { TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, reg & TL_HOST_DIOADR_MASK); TL_HR_WRITE(sc, TL_HOST_DIO_DATA, val); } static void tl_intreg_write_byte(tl_softc_t *sc, uint32_t reg, uint8_t val) { TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, (reg & (~0x03)) & TL_HOST_DIOADR_MASK); TL_HR_WRITE_BYTE(sc, TL_HOST_DIO_DATA + (reg & 0x03), val); } void tl_mii_sync(struct tl_softc *sc) { int i; netsio_clr(sc, TL_NETSIO_MTXEN); for (i = 0; i < 32; i++) { netsio_clr(sc, TL_NETSIO_MCLK); netsio_set(sc, TL_NETSIO_MCLK); } } void tl_mii_sendbits(struct tl_softc *sc, uint32_t data, int nbits) { int i; netsio_set(sc, TL_NETSIO_MTXEN); for (i = 1 << (nbits - 1); i; i = i >> 1) { netsio_clr(sc, TL_NETSIO_MCLK); netsio_read(sc, TL_NETSIO_MCLK); if (data & i) netsio_set(sc, TL_NETSIO_MDATA); else netsio_clr(sc, TL_NETSIO_MDATA); netsio_set(sc, TL_NETSIO_MCLK); netsio_read(sc, TL_NETSIO_MCLK); } } int tl_mii_read(device_t self, int phy, int reg, uint16_t *val) { struct tl_softc *sc = device_private(self); uint16_t data = 0; int i, err; /* * Read the PHY register by manually driving the MII control lines. */ tl_mii_sync(sc); tl_mii_sendbits(sc, MII_COMMAND_START, 2); tl_mii_sendbits(sc, MII_COMMAND_READ, 2); tl_mii_sendbits(sc, phy, 5); tl_mii_sendbits(sc, reg, 5); netsio_clr(sc, TL_NETSIO_MTXEN); netsio_clr(sc, TL_NETSIO_MCLK); netsio_set(sc, TL_NETSIO_MCLK); netsio_clr(sc, TL_NETSIO_MCLK); err = netsio_read(sc, TL_NETSIO_MDATA); netsio_set(sc, TL_NETSIO_MCLK); /* Even if an error occurs, must still clock out the cycle. */ for (i = 0; i < 16; i++) { data <<= 1; netsio_clr(sc, TL_NETSIO_MCLK); if (err == 0 && netsio_read(sc, TL_NETSIO_MDATA)) data |= 1; netsio_set(sc, TL_NETSIO_MCLK); } netsio_clr(sc, TL_NETSIO_MCLK); netsio_set(sc, TL_NETSIO_MCLK); *val = data; return err; } int tl_mii_write(device_t self, int phy, int reg, uint16_t val) { struct tl_softc *sc = device_private(self); /* * Write the PHY register by manually driving the MII control lines. */ tl_mii_sync(sc); tl_mii_sendbits(sc, MII_COMMAND_START, 2); tl_mii_sendbits(sc, MII_COMMAND_WRITE, 2); tl_mii_sendbits(sc, phy, 5); tl_mii_sendbits(sc, reg, 5); tl_mii_sendbits(sc, MII_COMMAND_ACK, 2); tl_mii_sendbits(sc, val, 16); netsio_clr(sc, TL_NETSIO_MCLK); netsio_set(sc, TL_NETSIO_MCLK); return 0; } void tl_statchg(struct ifnet *ifp) { tl_softc_t *sc = ifp->if_softc; uint32_t reg; #ifdef TLDEBUG printf("%s: media %x\n", __func__, sc->tl_mii.mii_media.ifm_media); #endif /* * We must keep the ThunderLAN and the PHY in sync as * to the status of full-duplex! */ reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetCmd); if (sc->tl_mii.mii_media_active & IFM_FDX) reg |= TL_NETCOMMAND_DUPLEX; else reg &= ~TL_NETCOMMAND_DUPLEX; tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd, reg); } /********** I2C glue **********/ static int tl_i2c_send_start(void *cookie, int flags) { return i2c_bitbang_send_start(cookie, flags, &tl_i2cbb_ops); } static int tl_i2c_send_stop(void *cookie, int flags) { return i2c_bitbang_send_stop(cookie, flags, &tl_i2cbb_ops); } static int tl_i2c_initiate_xfer(void *cookie, i2c_addr_t addr, int flags) { return i2c_bitbang_initiate_xfer(cookie, addr, flags, &tl_i2cbb_ops); } static int tl_i2c_read_byte(void *cookie, uint8_t *valp, int flags) { return i2c_bitbang_read_byte(cookie, valp, flags, &tl_i2cbb_ops); } static int tl_i2c_write_byte(void *cookie, uint8_t val, int flags) { return i2c_bitbang_write_byte(cookie, val, flags, &tl_i2cbb_ops); } /********** I2C bit-bang glue **********/ static void tl_i2cbb_set_bits(void *cookie, uint32_t bits) { struct tl_softc *sc = cookie; uint8_t reg; reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio); reg = (reg & ~(TL_NETSIO_EDATA | TL_NETSIO_ECLOCK)) | bits; tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio, reg); } static void tl_i2cbb_set_dir(void *cookie, uint32_t bits) { struct tl_softc *sc = cookie; uint8_t reg; reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio); reg = (reg & ~TL_NETSIO_ETXEN) | bits; tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio, reg); } static uint32_t tl_i2cbb_read(void *cookie) { return tl_intreg_read_byte(cookie, TL_INT_NET + TL_INT_NetSio); } /********** End of I2C stuff **********/ static int tl_intr(void *v) { tl_softc_t *sc = v; struct ifnet *ifp = &sc->tl_if; struct Rx_list *Rx; struct Tx_list *Tx; struct mbuf *m; uint32_t int_type, int_reg; int ack = 0; int size; int_reg = TL_HR_READ(sc, TL_HOST_INTR_DIOADR); int_type = int_reg & TL_INTR_MASK; if (int_type == 0) return 0; #if defined(TLDEBUG_RX) || defined(TLDEBUG_TX) printf("%s: interrupt type %x, intr_reg %x\n", device_xname(sc->sc_dev), int_type, int_reg); #endif /* disable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff); switch (int_type & TL_INTR_MASK) { case TL_INTR_RxEOF: bus_dmamap_sync(sc->tl_dmatag, sc->Rx_dmamap, 0, sizeof(struct tl_Rx_list) * TL_NBUF, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); while (le32toh(sc->active_Rx->hw_list->stat) & TL_RX_CSTAT_CPLT) { /* dequeue and requeue at end of list */ ack++; Rx = sc->active_Rx; sc->active_Rx = Rx->next; bus_dmamap_sync(sc->tl_dmatag, Rx->m_dmamap, 0, Rx->m_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->tl_dmatag, Rx->m_dmamap); m = Rx->m; size = le32toh(Rx->hw_list->stat) >> 16; #ifdef TLDEBUG_RX printf("%s: RX list complete, Rx %p, size=%d\n", __func__, Rx, size); #endif if (tl_add_RxBuff(sc, Rx, m) == 0) { /* * No new mbuf, reuse the same. This means * that this packet * is lost */ m = NULL; #ifdef TL_PRIV_STATS sc->ierr_nomem++; #endif #ifdef TLDEBUG printf("%s: out of mbuf, lost input packet\n", device_xname(sc->sc_dev)); #endif } Rx->next = NULL; Rx->hw_list->fwd = 0; sc->last_Rx->hw_list->fwd = htole32(Rx->hw_listaddr); sc->last_Rx->next = Rx; sc->last_Rx = Rx; /* deliver packet */ if (m) { if (size < sizeof(struct ether_header)) { m_freem(m); continue; } m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = size; #ifdef TLDEBUG_RX { struct ether_header *eh = mtod(m, struct ether_header *); printf("%s: Rx packet:\n", __func__); ether_printheader(eh); } #endif if_percpuq_enqueue(ifp->if_percpuq, m); } } bus_dmamap_sync(sc->tl_dmatag, sc->Rx_dmamap, 0, sizeof(struct tl_Rx_list) * TL_NBUF, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); #ifdef TLDEBUG_RX printf("TL_INTR_RxEOF: ack %d\n", ack); #else if (ack == 0) { printf("%s: EOF intr without anything to read !\n", device_xname(sc->sc_dev)); tl_reset(sc); /* schedule reinit of the board */ callout_reset(&sc->tl_restart_ch, 1, tl_restart, ifp); return 1; } #endif break; case TL_INTR_RxEOC: ack++; bus_dmamap_sync(sc->tl_dmatag, sc->Rx_dmamap, 0, sizeof(struct tl_Rx_list) * TL_NBUF, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); #ifdef TLDEBUG_RX printf("TL_INTR_RxEOC: ack %d\n", ack); #endif #ifdef DIAGNOSTIC if (le32toh(sc->active_Rx->hw_list->stat) & TL_RX_CSTAT_CPLT) { printf("%s: Rx EOC interrupt and active Tx list not " "cleared\n", device_xname(sc->sc_dev)); return 0; } else #endif { /* * write address of Rx list and send Rx GO command, ack * interrupt and enable interrupts in one command */ TL_HR_WRITE(sc, TL_HOST_CH_PARM, sc->active_Rx->hw_listaddr); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO | HOST_CMD_RT | HOST_CMD_Nes | ack | int_type | HOST_CMD_ACK | HOST_CMD_IntOn); return 1; } case TL_INTR_TxEOF: case TL_INTR_TxEOC: bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0, sizeof(struct tl_Tx_list) * TL_NBUF, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); while ((Tx = sc->active_Tx) != NULL) { if ((le32toh(Tx->hw_list->stat) & TL_TX_CSTAT_CPLT) == 0) break; ack++; #ifdef TLDEBUG_TX printf("TL_INTR_TxEOC: list 0x%x done\n", (int)Tx->hw_listaddr); #endif Tx->hw_list->stat = 0; bus_dmamap_sync(sc->tl_dmatag, Tx->m_dmamap, 0, Tx->m_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->tl_dmatag, Tx->m_dmamap); m_freem(Tx->m); Tx->m = NULL; sc->active_Tx = Tx->next; if (sc->active_Tx == NULL) sc->last_Tx = NULL; Tx->next = sc->Free_Tx; sc->Free_Tx = Tx; } bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0, sizeof(struct tl_Tx_list) * TL_NBUF, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* if this was an EOC, ACK immediately */ if (ack) sc->tl_if.if_flags &= ~IFF_OACTIVE; if (int_type == TL_INTR_TxEOC) { #ifdef TLDEBUG_TX printf("TL_INTR_TxEOC: ack %d (will be set to 1)\n", ack); #endif TL_HR_WRITE(sc, TL_HOST_CMD, 1 | int_type | HOST_CMD_ACK | HOST_CMD_IntOn); if (sc->active_Tx != NULL) { /* needs a Tx go command */ TL_HR_WRITE(sc, TL_HOST_CH_PARM, sc->active_Tx->hw_listaddr); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO); } sc->tl_if.if_timer = 0; if_schedule_deferred_start(&sc->tl_if); return 1; } #ifdef TLDEBUG else { printf("TL_INTR_TxEOF: ack %d\n", ack); } #endif sc->tl_if.if_timer = 0; if_schedule_deferred_start(&sc->tl_if); break; case TL_INTR_Stat: ack++; #ifdef TLDEBUG printf("TL_INTR_Stat: ack %d\n", ack); #endif tl_read_stats(sc); break; case TL_INTR_Adc: if (int_reg & TL_INTVec_MASK) { /* adapter check conditions */ printf("%s: check condition, intvect=0x%x, " "ch_param=0x%x\n", device_xname(sc->sc_dev), int_reg & TL_INTVec_MASK, TL_HR_READ(sc, TL_HOST_CH_PARM)); tl_reset(sc); /* schedule reinit of the board */ callout_reset(&sc->tl_restart_ch, 1, tl_restart, ifp); return 1; } else { uint8_t netstat; /* Network status */ netstat = tl_intreg_read_byte(sc, TL_INT_NET+TL_INT_NetSts); printf("%s: network status, NetSts=%x\n", device_xname(sc->sc_dev), netstat); /* Ack interrupts */ tl_intreg_write_byte(sc, TL_INT_NET+TL_INT_NetSts, netstat); ack++; } break; default: printf("%s: unhandled interrupt code %x!\n", device_xname(sc->sc_dev), int_type); ack++; } if (ack) { /* Ack the interrupt and enable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, ack | int_type | HOST_CMD_ACK | HOST_CMD_IntOn); rnd_add_uint32(&sc->rnd_source, int_reg); return 1; } /* ack = 0 ; interrupt was perhaps not our. Just enable interrupts */ TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOn); return 0; } static int tl_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data) { struct tl_softc *sc = ifp->if_softc; int s, error; s = splnet(); error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) tl_addr_filter(sc); error = 0; } splx(s); return error; } static void tl_ifstart(struct ifnet *ifp) { tl_softc_t *sc = ifp->if_softc; struct mbuf *mb_head; struct Tx_list *Tx; int segment, size; int again, error; if ((sc->tl_if.if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; txloop: /* If we don't have more space ... */ if (sc->Free_Tx == NULL) { #ifdef TLDEBUG printf("%s: No free TX list\n", __func__); #endif sc->tl_if.if_flags |= IFF_OACTIVE; return; } /* Grab a paquet for output */ IFQ_DEQUEUE(&ifp->if_snd, mb_head); if (mb_head == NULL) { #ifdef TLDEBUG_TX printf("%s: nothing to send\n", __func__); #endif return; } Tx = sc->Free_Tx; sc->Free_Tx = Tx->next; Tx->next = NULL; again = 0; /* * Go through each of the mbufs in the chain and initialize * the transmit list descriptors with the physical address * and size of the mbuf. */ tbdinit: memset(Tx->hw_list, 0, sizeof(struct tl_Tx_list)); Tx->m = mb_head; size = mb_head->m_pkthdr.len; if ((error = bus_dmamap_load_mbuf(sc->tl_dmatag, Tx->m_dmamap, mb_head, BUS_DMA_NOWAIT)) || (size < ETHER_MIN_TX && Tx->m_dmamap->dm_nsegs == TL_NSEG)) { struct mbuf *mn; /* * We ran out of segments, or we will. We have to recopy this * mbuf chain first. */ if (error == 0) bus_dmamap_unload(sc->tl_dmatag, Tx->m_dmamap); if (again) { /* already copied, can't do much more */ m_freem(mb_head); goto bad; } again = 1; #ifdef TLDEBUG_TX printf("%s: need to copy mbuf\n", __func__); #endif #ifdef TL_PRIV_STATS sc->oerr_mcopy++; #endif MGETHDR(mn, M_DONTWAIT, MT_DATA); if (mn == NULL) { m_freem(mb_head); goto bad; } if (mb_head->m_pkthdr.len > MHLEN) { MCLGET(mn, M_DONTWAIT); if ((mn->m_flags & M_EXT) == 0) { m_freem(mn); m_freem(mb_head); goto bad; } } m_copydata(mb_head, 0, mb_head->m_pkthdr.len, mtod(mn, void *)); mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; m_freem(mb_head); mb_head = mn; goto tbdinit; } for (segment = 0; segment < Tx->m_dmamap->dm_nsegs; segment++) { Tx->hw_list->seg[segment].data_addr = htole32(Tx->m_dmamap->dm_segs[segment].ds_addr); Tx->hw_list->seg[segment].data_count = htole32(Tx->m_dmamap->dm_segs[segment].ds_len); } bus_dmamap_sync(sc->tl_dmatag, Tx->m_dmamap, 0, Tx->m_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* We are at end of mbuf chain. check the size and * see if it needs to be extended */ if (size < ETHER_MIN_TX) { #ifdef DIAGNOSTIC if (segment >= TL_NSEG) { panic("%s: too much segments (%d)", __func__, segment); } #endif /* * add the nullbuf in the seg */ Tx->hw_list->seg[segment].data_count = htole32(ETHER_MIN_TX - size); Tx->hw_list->seg[segment].data_addr = htole32(sc->null_dmamap->dm_segs[0].ds_addr); size = ETHER_MIN_TX; segment++; } /* The list is done, finish the list init */ Tx->hw_list->seg[segment - 1].data_count |= htole32(TL_LAST_SEG); Tx->hw_list->stat = htole32((size << 16) | 0x3000); #ifdef TLDEBUG_TX printf("%s: sending, Tx : stat = 0x%x\n", device_xname(sc->sc_dev), le32toh(Tx->hw_list->stat)); #if 0 for (segment = 0; segment < TL_NSEG; segment++) { printf(" seg %d addr 0x%x len 0x%x\n", segment, le32toh(Tx->hw_list->seg[segment].data_addr), le32toh(Tx->hw_list->seg[segment].data_count)); } #endif #endif if (sc->active_Tx == NULL) { sc->active_Tx = sc->last_Tx = Tx; #ifdef TLDEBUG_TX printf("%s: Tx GO, addr=0x%ux\n", device_xname(sc->sc_dev), (int)Tx->hw_listaddr); #endif bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0, sizeof(struct tl_Tx_list) * TL_NBUF, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); TL_HR_WRITE(sc, TL_HOST_CH_PARM, Tx->hw_listaddr); TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO); } else { #ifdef TLDEBUG_TX printf("%s: Tx addr=0x%ux queued\n", device_xname(sc->sc_dev), (int)Tx->hw_listaddr); #endif sc->last_Tx->hw_list->fwd = htole32(Tx->hw_listaddr); bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0, sizeof(struct tl_Tx_list) * TL_NBUF, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->last_Tx->next = Tx; sc->last_Tx = Tx; #ifdef DIAGNOSTIC if (sc->last_Tx->hw_list->fwd & 0x7) printf("%s: physical addr 0x%x of list not properly " "aligned\n", device_xname(sc->sc_dev), sc->last_Rx->hw_list->fwd); #endif } /* Pass packet to bpf if there is a listener */ bpf_mtap(ifp, mb_head, BPF_D_OUT); /* * Set a 5 second timer just in case we don't hear from the card again. */ ifp->if_timer = 5; goto txloop; bad: #ifdef TLDEBUG printf("%s: Out of mbuf, Tx pkt lost\n", __func__); #endif Tx->next = sc->Free_Tx; sc->Free_Tx = Tx; } static void tl_ifwatchdog(struct ifnet *ifp) { tl_softc_t *sc = ifp->if_softc; if ((ifp->if_flags & IFF_RUNNING) == 0) return; printf("%s: device timeout\n", device_xname(sc->sc_dev)); if_statinc(ifp, if_oerrors); tl_init(ifp); } static int tl_add_RxBuff(tl_softc_t *sc, struct Rx_list *Rx, struct mbuf *oldm) { struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m != NULL) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); if (oldm == NULL) return 0; m = oldm; m->m_data = m->m_ext.ext_buf; } } else { if (oldm == NULL) return 0; m = oldm; m->m_data = m->m_ext.ext_buf; } /* (re)init the Rx_list struct */ Rx->m = m; if ((error = bus_dmamap_load(sc->tl_dmatag, Rx->m_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: bus_dmamap_load() failed (error %d) for " "tl_add_RxBuff ", device_xname(sc->sc_dev), error); printf("size %d (%d)\n", m->m_pkthdr.len, MCLBYTES); m_freem(m); Rx->m = NULL; return 0; } bus_dmamap_sync(sc->tl_dmatag, Rx->m_dmamap, 0, Rx->m_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); /* * Move the data pointer up so that the incoming data packet * will be 32-bit aligned. */ m->m_data += 2; Rx->hw_list->stat = htole32(((Rx->m_dmamap->dm_segs[0].ds_len - 2) << 16) | 0x3000); Rx->hw_list->seg.data_count = htole32(Rx->m_dmamap->dm_segs[0].ds_len - 2); Rx->hw_list->seg.data_addr = htole32(Rx->m_dmamap->dm_segs[0].ds_addr + 2); return (m != oldm); } static void tl_ticks(void *v) { tl_softc_t *sc = v; tl_read_stats(sc); /* Tick the MII. */ mii_tick(&sc->tl_mii); /* read statistics every seconds */ callout_reset(&sc->tl_tick_ch, hz, tl_ticks, sc); } static void tl_read_stats(tl_softc_t *sc) { uint32_t reg; int ierr_overr; int ierr_code; int ierr_crc; int oerr_underr; int oerr_deferred; int oerr_coll; int oerr_multicoll; int oerr_exesscoll; int oerr_latecoll; int oerr_carrloss; struct ifnet *ifp = &sc->tl_if; net_stat_ref_t nsr = IF_STAT_GETREF(ifp); reg = tl_intreg_read(sc, TL_INT_STATS_TX); if_statadd_ref(nsr, if_opackets, reg & 0x00ffffff); oerr_underr = reg >> 24; reg = tl_intreg_read(sc, TL_INT_STATS_RX); ierr_overr = reg >> 24; reg = tl_intreg_read(sc, TL_INT_STATS_FERR); ierr_crc = (reg & TL_FERR_CRC) >> 16; ierr_code = (reg & TL_FERR_CODE) >> 24; oerr_deferred = (reg & TL_FERR_DEF); reg = tl_intreg_read(sc, TL_INT_STATS_COLL); oerr_multicoll = (reg & TL_COL_MULTI); oerr_coll = (reg & TL_COL_SINGLE) >> 16; reg = tl_intreg_read(sc, TL_INT_LERR); oerr_exesscoll = (reg & TL_LERR_ECOLL); oerr_latecoll = (reg & TL_LERR_LCOLL) >> 8; oerr_carrloss = (reg & TL_LERR_CL) >> 16; if_statadd_ref(nsr, if_oerrors, oerr_underr + oerr_exesscoll + oerr_latecoll + oerr_carrloss); if_statadd_ref(nsr, if_collisions, oerr_coll + oerr_multicoll); if_statadd_ref(nsr, if_ierrors, ierr_overr + ierr_code + ierr_crc); IF_STAT_PUTREF(ifp); if (ierr_overr) printf("%s: receiver ring buffer overrun\n", device_xname(sc->sc_dev)); if (oerr_underr) printf("%s: transmit buffer underrun\n", device_xname(sc->sc_dev)); #ifdef TL_PRIV_STATS sc->ierr_overr += ierr_overr; sc->ierr_code += ierr_code; sc->ierr_crc += ierr_crc; sc->oerr_underr += oerr_underr; sc->oerr_deferred += oerr_deferred; sc->oerr_coll += oerr_coll; sc->oerr_multicoll += oerr_multicoll; sc->oerr_exesscoll += oerr_exesscoll; sc->oerr_latecoll += oerr_latecoll; sc->oerr_carrloss += oerr_carrloss; #endif } static void tl_addr_filter(tl_softc_t *sc) { struct ethercom *ec = &sc->tl_ec; struct ether_multistep step; struct ether_multi *enm; uint32_t hash[2] = {0, 0}; int i; sc->tl_if.if_flags &= ~IFF_ALLMULTI; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { #ifdef TLDEBUG printf("%s: addrs %s %s\n", __func__, ether_sprintf(enm->enm_addrlo), ether_sprintf(enm->enm_addrhi)); #endif if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) { i = tl_multicast_hash(enm->enm_addrlo); hash[i / 32] |= 1 << (i%32); } else { hash[0] = hash[1] = 0xffffffff; sc->tl_if.if_flags |= IFF_ALLMULTI; break; } ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); #ifdef TLDEBUG printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]); #endif tl_intreg_write(sc, TL_INT_HASH1, hash[0]); tl_intreg_write(sc, TL_INT_HASH2, hash[1]); } static int tl_multicast_hash(uint8_t *a) { int hash; #define DA(addr, bit) (addr[5 - (bit / 8)] & (1 << (bit % 8))) #define xor8(a, b, c, d, e, f, g, h) \ (((a != 0) + (b != 0) + (c != 0) + (d != 0) + \ (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1) hash = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30), DA(a,36), DA(a,42)); hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31), DA(a,37), DA(a,43)) << 1; hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32), DA(a,38), DA(a,44)) << 2; hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33), DA(a,39), DA(a,45)) << 3; hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34), DA(a,40), DA(a,46)) << 4; hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35), DA(a,41), DA(a,47)) << 5; return hash; } #if defined(TLDEBUG_RX) void ether_printheader(struct ether_header *eh) { uint8_t *c = (uint8_t *)eh; int i; for (i = 0; i < sizeof(struct ether_header); i++) printf("%02x ", (u_int)c[i]); printf("\n"); } #endif