/* $NetBSD: hamming.c,v 1.2 2021/12/07 21:37:37 andvar Exp $ */ /* * Copyright (c) 2008, Atmel Corporation * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Atmel's name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: hamming.c,v 1.2 2021/12/07 21:37:37 andvar Exp $"); #include #include #include "hamming.h" /** * Calculates the 22-bit hamming code for a 256-bytes block of data. * \param data Data buffer to calculate code for. * \param code Pointer to a buffer where the code should be stored. */ void hamming_compute_256(const uint8_t *data, uint8_t *code) { unsigned int i; uint8_t column_sum = 0; uint8_t even_line_code = 0; uint8_t odd_line_code = 0; uint8_t even_column_code = 0; uint8_t odd_column_code = 0; /*- * Xor all bytes together to get the column sum; * At the same time, calculate the even and odd line codes */ for (i = 0; i < 256; i++) { column_sum ^= data[i]; /*- * If the xor sum of the byte is 0, then this byte has no * incidence on the computed code; so check if the sum is 1. */ if ((popcount(data[i]) & 1) == 1) { /*- * Parity groups are formed by forcing a particular * index bit to 0 (even) or 1 (odd). * Example on one byte: * * bits (dec) 7 6 5 4 3 2 1 0 * (bin) 111 110 101 100 011 010 001 000 * '---'---'---'----------. * | * groups P4' ooooooooooooooo eeeeeeeeeeeeeee P4 | * P2' ooooooo eeeeeee ooooooo eeeeeee P2 | * P1' ooo eee ooo eee ooo eee ooo eee P1 | * | * We can see that: | * - P4 -> bit 2 of index is 0 --------------------' * - P4' -> bit 2 of index is 1. * - P2 -> bit 1 of index if 0. * - etc... * We deduce that a bit position has an impact on all * even Px if the log2(x)nth bit of its index is 0 * ex: log2(4) = 2, * bit2 of the index must be 0 (-> 0 1 2 3) * and on all odd Px' if the log2(x)nth bit * of its index is 1 * ex: log2(2) = 1, * bit1 of the index must be 1 (-> 0 1 4 5) * * As such, we calculate all the possible Px and Px' * values at the same time in two variables, * even_line_code and odd_line_code, such as * even_line_code bits: P128 P64 P32 * P16 P8 P4 P2 P1 * odd_line_code bits: P128' P64' P32' P16' * P8' P4' P2' P1' */ even_line_code ^= (255 - i); odd_line_code ^= i; } } /*- * At this point, we have the line parities, and the column sum. * First, We must calculate the parity group values on the column sum. */ for (i = 0; i < 8; i++) { if (column_sum & 1) { even_column_code ^= (7 - i); odd_column_code ^= i; } column_sum >>= 1; } /*- * Now, we must interleave the parity values, * to obtain the following layout: * Code[0] = Line1 * Code[1] = Line2 * Code[2] = Column * Line = Px' Px P(x-1)- P(x-1) ... * Column = P4' P4 P2' P2 P1' P1 PadBit PadBit */ code[0] = 0; code[1] = 0; code[2] = 0; for (i = 0; i < 4; i++) { code[0] <<= 2; code[1] <<= 2; code[2] <<= 2; /* Line 1 */ if ((odd_line_code & 0x80) != 0) { code[0] |= 2; } if ((even_line_code & 0x80) != 0) { code[0] |= 1; } /* Line 2 */ if ((odd_line_code & 0x08) != 0) { code[1] |= 2; } if ((even_line_code & 0x08) != 0) { code[1] |= 1; } /* Column */ if ((odd_column_code & 0x04) != 0) { code[2] |= 2; } if ((even_column_code & 0x04) != 0) { code[2] |= 1; } odd_line_code <<= 1; even_line_code <<= 1; odd_column_code <<= 1; even_column_code <<= 1; } /* Invert codes (linux compatibility) */ code[0] = ~code[0]; code[1] = ~code[1]; code[2] = ~code[2]; } /** * Verifies and corrects a 256-bytes block of data using the given 22-bits * hamming code. * Returns 0 if there is no error, otherwise returns a HAMMING_ERROR code. * param data Data buffer to check. * \param original_code Hamming code to use for verifying the data. */ uint8_t hamming_correct_256(uint8_t *data, const uint8_t *original_code, const uint8_t *computed_code) { /* Calculate new code */ /* we allocate 4 bytes so we can use popcount32 in one step */ uint8_t correction_code[4]; /* this byte should remain zero all the time */ correction_code[3] = 0; /* Xor both codes together */ correction_code[0] = computed_code[0] ^ original_code[0]; correction_code[1] = computed_code[1] ^ original_code[1]; correction_code[2] = computed_code[2] ^ original_code[2]; /* If all bytes are 0, there is no error */ if (*(uint32_t *)correction_code == 0) { return 0; } /* If there is a single bit error, there are 11 bits set to 1 */ if (popcount32(*(uint32_t *)correction_code) == 11) { /* Get byte and bit indexes */ uint8_t byte = correction_code[0] & 0x80; byte |= (correction_code[0] << 1) & 0x40; byte |= (correction_code[0] << 2) & 0x20; byte |= (correction_code[0] << 3) & 0x10; byte |= (correction_code[1] >> 4) & 0x08; byte |= (correction_code[1] >> 3) & 0x04; byte |= (correction_code[1] >> 2) & 0x02; byte |= (correction_code[1] >> 1) & 0x01; uint8_t bit = (correction_code[2] >> 5) & 0x04; bit |= (correction_code[2] >> 4) & 0x02; bit |= (correction_code[2] >> 3) & 0x01; /* Correct bit */ data[byte] ^= (1 << bit); return HAMMING_ERROR_SINGLEBIT; } /* Check if ECC has been corrupted */ if (popcount32(*(uint32_t *)correction_code) == 1) { return HAMMING_ERROR_ECC; } else { /* Otherwise, this is a multi-bit error */ return HAMMING_ERROR_MULTIPLEBITS; } }