/* $NetBSD: m41st84.c,v 1.32 2021/05/21 21:21:01 macallan Exp $ */ /* * Copyright (c) 2003 Wasabi Systems, Inc. * All rights reserved. * * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: m41st84.c,v 1.32 2021/05/21 21:21:01 macallan Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include "ioconf.h" struct strtc_model { uint16_t sm_model; uint8_t sm_nvram_start; uint8_t sm_nvram_size; uint32_t sm_flags; }; #define STRTC_F_HAS_WDOG __BIT(0) static const struct strtc_model m41t80_model = { .sm_model = 80, }; static const struct strtc_model m41t81_model = { .sm_model = 81, .sm_flags = STRTC_F_HAS_WDOG, }; static const struct strtc_model m48t84_model = { .sm_model = 84, .sm_nvram_start = M41ST84_USER_RAM, .sm_nvram_size = M41ST84_USER_RAM_SIZE, .sm_flags = STRTC_F_HAS_WDOG, }; static const struct device_compatible_entry compat_data[] = { { .compat = "st,m41t80", .data = &m41t80_model }, { .compat = "st,m41t81", .data = &m41t81_model }, { .compat = "st,m41t84", .data = &m48t84_model }, DEVICE_COMPAT_EOL }; struct strtc_softc { device_t sc_dev; i2c_tag_t sc_tag; int sc_address; int sc_open; const struct strtc_model *sc_model; struct todr_chip_handle sc_todr; }; static void strtc_attach(device_t, device_t, void *); static int strtc_match(device_t, cfdata_t, void *); CFATTACH_DECL_NEW(strtc, sizeof(struct strtc_softc), strtc_match, strtc_attach, NULL, NULL); dev_type_open(strtc_open); dev_type_close(strtc_close); dev_type_read(strtc_read); dev_type_write(strtc_write); const struct cdevsw strtc_cdevsw = { .d_open = strtc_open, .d_close = strtc_close, .d_read = strtc_read, .d_write = strtc_write, .d_ioctl = noioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_OTHER }; static int strtc_clock_read(struct strtc_softc *sc, struct clock_ymdhms *); static int strtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *); static int strtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *); static const struct strtc_model * strtc_model_by_number(u_int model) { const struct device_compatible_entry *dce; const struct strtc_model *sm; /* no model given; assume it's a 41T80 */ if (model == 0) return &m41t80_model; for (dce = compat_data; dce->compat != NULL; dce++) { sm = dce->data; if (sm->sm_model == model) return sm; } return NULL; } static const struct strtc_model * strtc_model_by_compat(const struct i2c_attach_args *ia) { const struct device_compatible_entry *dce; const struct strtc_model *sm = NULL; if ((dce = iic_compatible_lookup(ia, compat_data)) != NULL) sm = dce->data; return sm; } static int strtc_match(device_t parent, cfdata_t cf, void *arg) { struct i2c_attach_args *ia = arg; int match_result; if (iic_use_direct_match(ia, cf, compat_data, &match_result)) return match_result; if (strtc_model_by_number(cf->cf_flags & 0xffff) == NULL) return 0; /* indirect config - check typical address */ if (ia->ia_addr == M41ST84_ADDR) return I2C_MATCH_ADDRESS_ONLY; return 0; } static void strtc_attach(device_t parent, device_t self, void *arg) { struct strtc_softc *sc = device_private(self); struct i2c_attach_args *ia = arg; const struct strtc_model *sm; if ((sm = strtc_model_by_compat(ia)) == NULL) sm = strtc_model_by_number(device_cfdata(self)->cf_flags); if (sm == NULL) { aprint_error(": unable to determine model!\n"); return; } aprint_naive(": Real-time Clock%s\n", sm->sm_nvram_size ? "/NVRAM" : ""); aprint_normal(": M41T%d Real-time Clock%s\n", sm->sm_model, sm->sm_nvram_size ? "/NVRAM" : ""); sc->sc_tag = ia->ia_tag; sc->sc_address = ia->ia_addr; sc->sc_model = sm; sc->sc_dev = self; sc->sc_open = 0; sc->sc_todr.cookie = sc; sc->sc_todr.todr_gettime = NULL; sc->sc_todr.todr_settime = NULL; sc->sc_todr.todr_gettime_ymdhms = strtc_gettime_ymdhms; sc->sc_todr.todr_settime_ymdhms = strtc_settime_ymdhms; sc->sc_todr.todr_setwen = NULL; todr_attach(&sc->sc_todr); } /*ARGSUSED*/ int strtc_open(dev_t dev, int flag, int fmt, struct lwp *l) { struct strtc_softc *sc; if ((sc = device_lookup_private(&strtc_cd, minor(dev))) == NULL) return (ENXIO); /* XXX: Locking */ if (sc->sc_open) return (EBUSY); sc->sc_open = 1; return (0); } /*ARGSUSED*/ int strtc_close(dev_t dev, int flag, int fmt, struct lwp *l) { struct strtc_softc *sc; if ((sc = device_lookup_private(&strtc_cd, minor(dev))) == NULL) return (ENXIO); sc->sc_open = 0; return (0); } /*ARGSUSED*/ int strtc_read(dev_t dev, struct uio *uio, int flags) { struct strtc_softc *sc; u_int8_t ch, cmdbuf[1]; int a, error; if ((sc = device_lookup_private(&strtc_cd, minor(dev))) == NULL) return (ENXIO); const struct strtc_model * const sm = sc->sc_model; if (uio->uio_offset >= sm->sm_nvram_size) return (EINVAL); if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) return (error); while (uio->uio_resid && uio->uio_offset < sm->sm_nvram_size) { a = (int)uio->uio_offset; cmdbuf[0] = a + sm->sm_nvram_start; if ((error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, cmdbuf, 1, &ch, 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "strtc_read: read failed at 0x%x\n", a); return (error); } if ((error = uiomove(&ch, 1, uio)) != 0) { iic_release_bus(sc->sc_tag, 0); return (error); } } iic_release_bus(sc->sc_tag, 0); return (0); } /*ARGSUSED*/ int strtc_write(dev_t dev, struct uio *uio, int flags) { struct strtc_softc *sc; u_int8_t cmdbuf[2]; int a, error; if ((sc = device_lookup_private(&strtc_cd, minor(dev))) == NULL) return (ENXIO); const struct strtc_model * const sm = sc->sc_model; if (uio->uio_offset >= sm->sm_nvram_size) return (EINVAL); if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) return (error); while (uio->uio_resid && uio->uio_offset < sm->sm_nvram_size) { a = (int)uio->uio_offset; cmdbuf[0] = a + sm->sm_nvram_start; if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0) break; if ((error = iic_exec(sc->sc_tag, uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { aprint_error_dev(sc->sc_dev, "strtc_write: write failed at 0x%x\n", a); break; } } iic_release_bus(sc->sc_tag, 0); return (error); } static int strtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt) { struct strtc_softc *sc = ch->cookie; struct clock_ymdhms check; int retries, error; memset(dt, 0, sizeof(*dt)); memset(&check, 0, sizeof(check)); /* * Since we don't support Burst Read, we have to read the clock twice * until we get two consecutive identical results. */ retries = 5; do { if ((error = strtc_clock_read(sc, dt)) == 0) error = strtc_clock_read(sc, &check); if (error) return error; } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries); return (0); } static int strtc_clock_read(struct strtc_softc *sc, struct clock_ymdhms *dt) { u_int8_t bcd[M41ST84_REG_DATE_BYTES], cmdbuf[2]; int i, error; if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) { aprint_error_dev(sc->sc_dev, "strtc_clock_read: failed to acquire I2C bus\n"); return (error); } /* * Check for the HT bit -- if set, then clock lost power & stopped * If that happened, then clear the bit so that the clock will have * a chance to run again. */ cmdbuf[0] = M41ST84_REG_AL_HOUR; if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "strtc_clock_read: failed to read HT\n"); return (error); } if (cmdbuf[1] & M41ST84_AL_HOUR_HT) { cmdbuf[1] &= ~M41ST84_AL_HOUR_HT; if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "strtc_clock_read: failed to reset HT\n"); return (error); } } /* Read each RTC register in order. */ for (i = M41ST84_REG_CSEC; i < M41ST84_REG_DATE_BYTES; i++) { cmdbuf[0] = i; if ((error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, cmdbuf, 1, &bcd[i], 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "strtc_clock_read: failed to read rtc " "at 0x%x\n", i); return (error); } } /* Done with I2C */ iic_release_bus(sc->sc_tag, 0); /* * Convert the M41ST84's register values into something useable */ dt->dt_sec = bcdtobin(bcd[M41ST84_REG_SEC] & M41ST84_SEC_MASK); dt->dt_min = bcdtobin(bcd[M41ST84_REG_MIN] & M41ST84_MIN_MASK); dt->dt_hour = bcdtobin(bcd[M41ST84_REG_CENHR] & M41ST84_HOUR_MASK); dt->dt_day = bcdtobin(bcd[M41ST84_REG_DATE] & M41ST84_DATE_MASK); dt->dt_mon = bcdtobin(bcd[M41ST84_REG_MONTH] & M41ST84_MONTH_MASK); /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */ /* XXX: Wait, isn't that what rtc_offset in todr_gettime() is for? */ dt->dt_year = bcdtobin(bcd[M41ST84_REG_YEAR]) + POSIX_BASE_YEAR; return (0); } static int strtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt) { struct strtc_softc *sc = ch->cookie; uint8_t bcd[M41ST84_REG_DATE_BYTES], cmdbuf[2]; int i, error; /* * Convert our time representation into something the M41ST84 * can understand. */ bcd[M41ST84_REG_CSEC] = bintobcd(0); /* must always write as 0 */ bcd[M41ST84_REG_SEC] = bintobcd(dt->dt_sec); bcd[M41ST84_REG_MIN] = bintobcd(dt->dt_min); bcd[M41ST84_REG_CENHR] = bintobcd(dt->dt_hour); bcd[M41ST84_REG_DATE] = bintobcd(dt->dt_day); bcd[M41ST84_REG_DAY] = bintobcd(dt->dt_wday); bcd[M41ST84_REG_MONTH] = bintobcd(dt->dt_mon); bcd[M41ST84_REG_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100); if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) { aprint_error_dev(sc->sc_dev, "strtc_clock_write: failed to acquire I2C bus\n"); return (error); } /* Stop the clock */ cmdbuf[0] = M41ST84_REG_SEC; cmdbuf[1] = M41ST84_SEC_ST; if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "strtc_clock_write: failed to Hold Clock\n"); return (error); } /* * Check for the HT bit -- if set, then clock lost power & stopped * If that happened, then clear the bit so that the clock will have * a chance to run again. */ cmdbuf[0] = M41ST84_REG_AL_HOUR; if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "strtc_clock_write: failed to read HT\n"); return (error); } if (cmdbuf[1] & M41ST84_AL_HOUR_HT) { cmdbuf[1] &= ~M41ST84_AL_HOUR_HT; if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "strtc_clock_write: failed to reset HT\n"); return (error); } } /* * Write registers in reverse order. The last write (to the Seconds * register) will undo the Clock Hold, above. */ for (i = M41ST84_REG_DATE_BYTES - 1; i >= 0; i--) { cmdbuf[0] = i; if ((error = iic_exec(sc->sc_tag, i ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP, sc->sc_address, cmdbuf, 1, &bcd[i], 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "strtc_clock_write: failed to write rtc " " at 0x%x\n", i); /* XXX: Clock Hold is likely still asserted! */ return (error); } } iic_release_bus(sc->sc_tag, 0); return (0); } void strtc_wdog_config(void *arg, uint8_t wd) { struct strtc_softc *sc = arg; uint8_t cmdbuf[2]; if ((sc->sc_model->sm_flags & STRTC_F_HAS_WDOG) == 0) { aprint_error_dev(sc->sc_dev, "strtc_wdog_config: watchdog timer not present\n"); return; } if (iic_acquire_bus(sc->sc_tag, 0)) { aprint_error_dev(sc->sc_dev, "strtc_wdog_config: failed to acquire I2C bus\n"); return; } cmdbuf[0] = M41ST84_REG_WATCHDOG; cmdbuf[1] = wd; if (iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) { aprint_error_dev(sc->sc_dev, "strtc_wdog_config: failed to write watchdog\n"); return; } iic_release_bus(sc->sc_tag, 0); }