/* $NetBSD: sdhc_acpi.c,v 1.20 2022/02/06 15:52:20 jmcneill Exp $ */ /* * Copyright (c) 2016 Kimihiro Nonaka * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: sdhc_acpi.c,v 1.20 2022/02/06 15:52:20 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include /* Freescale ESDHC */ #define SDHC_ESDHC_FLAGS \ (SDHC_FLAG_HAVE_DVS|SDHC_FLAG_NO_PWR0|SDHC_FLAG_32BIT_ACCESS|SDHC_FLAG_ENHANCED) /* Rockchip eMMC device-specific method (_DSM) - 434addb0-8ff3-49d5-a724-95844b79ad1f */ static UINT8 sdhc_acpi_rockchip_dsm_uuid[ACPI_UUID_LENGTH] = { 0xb0, 0xdd, 0x4a, 0x43, 0xf3, 0x8f, 0xd5, 0x49, 0xa7, 0x24, 0x95, 0x84, 0x4b, 0x79, 0xad, 0x1f }; #define ROCKCHIP_DSM_REV 0 #define ROCKCHIP_DSM_FUNC_SET_CARD_CLOCK 1 #define _COMPONENT ACPI_RESOURCE_COMPONENT ACPI_MODULE_NAME ("sdhc_acpi") static int sdhc_acpi_match(device_t, cfdata_t, void *); static void sdhc_acpi_attach(device_t, device_t, void *); static int sdhc_acpi_detach(device_t, int); static bool sdhc_acpi_resume(device_t, const pmf_qual_t *); struct sdhc_acpi_softc { struct sdhc_softc sc; bus_space_tag_t sc_memt; bus_space_handle_t sc_memh; bus_size_t sc_memsize; void *sc_ih; ACPI_HANDLE sc_handle; ACPI_HANDLE sc_crs, sc_srs; ACPI_BUFFER sc_crs_buffer; }; CFATTACH_DECL_NEW(sdhc_acpi, sizeof(struct sdhc_acpi_softc), sdhc_acpi_match, sdhc_acpi_attach, sdhc_acpi_detach, NULL); static void sdhc_acpi_intel_emmc_hw_reset(struct sdhc_softc *, struct sdhc_host *); static int sdhc_acpi_rockchip_bus_clock(struct sdhc_softc *, int); static const struct sdhc_acpi_slot { const char *hid; const char *uid; int type; #define SLOT_TYPE_SD 0 /* SD or SDIO */ #define SLOT_TYPE_EMMC 1 /* eMMC */ uint32_t flags; } sdhc_acpi_slot_map[] = { { .hid = "80865ACA", .type = SLOT_TYPE_SD }, { .hid = "80865ACC", .type = SLOT_TYPE_EMMC }, { .hid = "80865AD0", .type = SLOT_TYPE_SD }, { .hid = "80860F14", .uid = "1", .type = SLOT_TYPE_EMMC }, { .hid = "80860F14", .uid = "3", .type = SLOT_TYPE_SD }, { .hid = "80860F16", .type = SLOT_TYPE_SD }, { .hid = "INT33BB", .uid = "2", .type = SLOT_TYPE_SD }, { .hid = "INT33BB", .uid = "3", .type = SLOT_TYPE_SD }, { .hid = "INT33C6", .type = SLOT_TYPE_SD }, { .hid = "INT3436", .type = SLOT_TYPE_SD }, { .hid = "INT344D", .type = SLOT_TYPE_SD }, { .hid = "NXP0003", .uid = "0", .type = SLOT_TYPE_SD, .flags = SDHC_ESDHC_FLAGS }, { .hid = "NXP0003", .uid = "1", .type = SLOT_TYPE_EMMC, .flags = SDHC_ESDHC_FLAGS }, { .hid = "RKCP0D40", .type = SLOT_TYPE_SD, .flags = SDHC_FLAG_32BIT_ACCESS | SDHC_FLAG_8BIT_MODE | SDHC_FLAG_SINGLE_POWER_WRITE }, /* Generic IDs last */ { .hid = "PNP0D40", .type = SLOT_TYPE_SD }, { .hid = "PNP0FFF", .uid = "3", .type = SLOT_TYPE_SD }, }; static const struct sdhc_acpi_slot * sdhc_acpi_find_slot(ACPI_DEVICE_INFO *ad) { const struct sdhc_acpi_slot *slot; const char *hid, *uid; size_t i; hid = ad->HardwareId.String; uid = ad->UniqueId.String; if (!(ad->Valid & ACPI_VALID_HID) || hid == NULL) return NULL; for (i = 0; i < __arraycount(sdhc_acpi_slot_map); i++) { slot = &sdhc_acpi_slot_map[i]; const char * const slot_id[] = { slot->hid, NULL }; if (acpi_match_hid(ad, slot_id)) { if (slot->uid == NULL || ((ad->Valid & ACPI_VALID_UID) != 0 && uid != NULL && strcmp(uid, slot->uid) == 0)) return slot; } } return NULL; } static int sdhc_acpi_match(device_t parent, cfdata_t match, void *opaque) { struct acpi_attach_args *aa = opaque; if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE) return 0; return sdhc_acpi_find_slot(aa->aa_node->ad_devinfo) != NULL; } static void sdhc_acpi_attach(device_t parent, device_t self, void *opaque) { struct sdhc_acpi_softc *sc = device_private(self); struct acpi_attach_args *aa = opaque; const struct sdhc_acpi_slot *slot; struct acpi_resources res; struct acpi_mem *mem; struct acpi_irq *irq; ACPI_STATUS rv; ACPI_INTEGER clock_freq; ACPI_INTEGER caps, caps_mask; ACPI_INTEGER funcs; sc->sc.sc_dev = self; sc->sc.sc_dmat = aa->aa_dmat; sc->sc.sc_host = NULL; sc->sc_memt = aa->aa_memt; sc->sc_handle = aa->aa_node->ad_handle; slot = sdhc_acpi_find_slot(aa->aa_node->ad_devinfo); if (slot->type == SLOT_TYPE_EMMC) sc->sc.sc_vendor_hw_reset = sdhc_acpi_intel_emmc_hw_reset; rv = acpi_dsm_query(sc->sc_handle, sdhc_acpi_rockchip_dsm_uuid, ROCKCHIP_DSM_REV, &funcs); if (ACPI_SUCCESS(rv) && ISSET(funcs, __BIT(ROCKCHIP_DSM_FUNC_SET_CARD_CLOCK))) { sc->sc.sc_vendor_bus_clock = sdhc_acpi_rockchip_bus_clock; } rv = acpi_resource_parse(self, aa->aa_node->ad_handle, "_CRS", &res, &acpi_resource_parse_ops_default); if (ACPI_FAILURE(rv)) return; AcpiGetHandle(aa->aa_node->ad_handle, "_CRS", &sc->sc_crs); AcpiGetHandle(aa->aa_node->ad_handle, "_SRS", &sc->sc_srs); if (sc->sc_crs && sc->sc_srs) { /* XXX Why need this? */ sc->sc_crs_buffer.Pointer = NULL; sc->sc_crs_buffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER; rv = AcpiGetCurrentResources(sc->sc_crs, &sc->sc_crs_buffer); if (ACPI_FAILURE(rv)) sc->sc_crs = sc->sc_srs = NULL; } mem = acpi_res_mem(&res, 0); irq = acpi_res_irq(&res, 0); if (mem == NULL || irq == NULL) { aprint_error_dev(self, "incomplete resources\n"); goto cleanup; } if (mem->ar_length == 0) { aprint_error_dev(self, "zero length memory resource\n"); goto cleanup; } sc->sc_memsize = mem->ar_length; if (bus_space_map(sc->sc_memt, mem->ar_base, sc->sc_memsize, 0, &sc->sc_memh)) { aprint_error_dev(self, "couldn't map registers\n"); goto cleanup; } sc->sc_ih = acpi_intr_establish(self, (uint64_t)(uintptr_t)aa->aa_node->ad_handle, IPL_BIO, false, sdhc_intr, &sc->sc, device_xname(self)); if (sc->sc_ih == NULL) { aprint_error_dev(self, "couldn't establish interrupt handler\n"); goto unmap; } sc->sc.sc_host = kmem_zalloc(sizeof(struct sdhc_host *), KM_SLEEP); sc->sc.sc_flags |= slot->flags; /* Enable DMA transfer */ sc->sc.sc_flags |= SDHC_FLAG_USE_DMA; /* Read clock frequency from device properties */ rv = acpi_dsd_integer(aa->aa_node->ad_handle, "clock-frequency", &clock_freq); if (ACPI_SUCCESS(rv)) { sc->sc.sc_clkbase = clock_freq / 1000; sc->sc.sc_flags |= SDHC_FLAG_NO_CLKBASE; } /* Capability overrides */ caps = caps_mask = 0; acpi_dsd_integer(aa->aa_node->ad_handle, "sdhci-caps-mask", &caps_mask); acpi_dsd_integer(aa->aa_node->ad_handle, "sdhci-caps", &caps); if (caps || caps_mask) { sc->sc.sc_caps = bus_space_read_4(sc->sc_memt, sc->sc_memh, SDHC_CAPABILITIES); sc->sc.sc_caps &= ~(caps_mask & 0xffffffff); sc->sc.sc_caps |= (caps & 0xffffffff); sc->sc.sc_caps2 = bus_space_read_4(sc->sc_memt, sc->sc_memh, SDHC_CAPABILITIES2); sc->sc.sc_caps2 &= ~(caps_mask >> 32); sc->sc.sc_caps2 |= (caps >> 32); sc->sc.sc_flags |= SDHC_FLAG_HOSTCAPS; } if (sdhc_host_found(&sc->sc, sc->sc_memt, sc->sc_memh, sc->sc_memsize) != 0) { aprint_error_dev(self, "couldn't initialize host\n"); goto fail; } if (!pmf_device_register1(self, sdhc_suspend, sdhc_acpi_resume, sdhc_shutdown)) { aprint_error_dev(self, "couldn't establish powerhook\n"); } acpi_resource_cleanup(&res); return; fail: if (sc->sc.sc_host != NULL) kmem_free(sc->sc.sc_host, sizeof(struct sdhc_host *)); sc->sc.sc_host = NULL; if (sc->sc_ih != NULL) acpi_intr_disestablish(sc->sc_ih); sc->sc_ih = NULL; unmap: bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_memsize); sc->sc_memsize = 0; cleanup: if (sc->sc_crs_buffer.Pointer) ACPI_FREE(sc->sc_crs_buffer.Pointer); sc->sc_crs_buffer.Pointer = NULL; acpi_resource_cleanup(&res); } static int sdhc_acpi_detach(device_t self, int flags) { struct sdhc_acpi_softc *sc = device_private(self); int rv; pmf_device_deregister(self); rv = sdhc_detach(&sc->sc, flags); if (rv) return rv; if (sc->sc_ih != NULL) acpi_intr_disestablish(sc->sc_ih); if (sc->sc.sc_host != NULL) kmem_free(sc->sc.sc_host, sizeof(struct sdhc_host *)); if (sc->sc_memsize > 0) bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_memsize); if (sc->sc_crs_buffer.Pointer) ACPI_FREE(sc->sc_crs_buffer.Pointer); return 0; } static bool sdhc_acpi_resume(device_t self, const pmf_qual_t *qual) { struct sdhc_acpi_softc *sc = device_private(self); ACPI_STATUS rv; if (sc->sc_crs && sc->sc_srs) { rv = AcpiSetCurrentResources(sc->sc_srs, &sc->sc_crs_buffer); if (ACPI_FAILURE(rv)) printf("%s: _SRS failed: %s\n", device_xname(self), AcpiFormatException(rv)); } return sdhc_resume(self, qual); } static void sdhc_acpi_intel_emmc_hw_reset(struct sdhc_softc *sc, struct sdhc_host *hp) { kmutex_t *plock = sdhc_host_lock(hp); uint8_t reg; mutex_enter(plock); reg = sdhc_host_read_1(hp, SDHC_POWER_CTL); reg |= 0x10; sdhc_host_write_1(hp, SDHC_POWER_CTL, reg); sdmmc_delay(10); reg &= ~0x10; sdhc_host_write_1(hp, SDHC_POWER_CTL, reg); sdmmc_delay(1000); mutex_exit(plock); } static int sdhc_acpi_rockchip_bus_clock(struct sdhc_softc *sc, int freq) { struct sdhc_acpi_softc *asc = (struct sdhc_acpi_softc *)sc; ACPI_STATUS rv; ACPI_OBJECT targetfreq; ACPI_OBJECT arg3; ACPI_INTEGER actfreq; targetfreq.Integer.Type = ACPI_TYPE_INTEGER; targetfreq.Integer.Value = freq * 1000; arg3.Package.Type = ACPI_TYPE_PACKAGE; arg3.Package.Count = 1; arg3.Package.Elements = &targetfreq; rv = acpi_dsm_integer(asc->sc_handle, sdhc_acpi_rockchip_dsm_uuid, ROCKCHIP_DSM_REV, ROCKCHIP_DSM_FUNC_SET_CARD_CLOCK, &arg3, &actfreq); if (ACPI_FAILURE(rv)) { aprint_error_dev(sc->sc_dev, "eMMC Set Card Clock DSM failed: %s\n", AcpiFormatException(rv)); return ENXIO; } aprint_debug_dev(sc->sc_dev, "eMMC Set Card Clock DSM returned %" PRIu64 " Hz\n", actfreq); if (actfreq == 0 && freq != 0) { return EINVAL; } return 0; }