/* $NetBSD: ehci_acpi.c,v 1.9 2021/12/24 00:27:22 jmcneill Exp $ */ /*- * Copyright (c) 2018 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jared McNeill . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: ehci_acpi.c,v 1.9 2021/12/24 00:27:22 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const struct device_compatible_entry compat_data[] = { /* EHCI-compliant USB controller without standard debug */ { .compat = "PNP0D20" }, /* EHCI-compliant USB controller with standard debug */ { .compat = "PNP0D25" }, DEVICE_COMPAT_EOL }; struct ehci_acpi_softc { struct ehci_softc sc_ehci; ACPI_HANDLE sc_handle; }; static int ehci_acpi_match(device_t, cfdata_t, void *); static void ehci_acpi_attach(device_t, device_t, void *); static void ehci_acpi_init(struct ehci_softc *); static int ehci_acpi_num_companions(struct acpi_attach_args *); CFATTACH_DECL2_NEW(ehci_acpi, sizeof(struct ehci_acpi_softc), ehci_acpi_match, ehci_acpi_attach, NULL, ehci_activate, NULL, ehci_childdet); static int ehci_acpi_match(device_t parent, cfdata_t cf, void *aux) { struct acpi_attach_args *aa = aux; return acpi_compatible_match(aa, compat_data); } static void ehci_acpi_attach(device_t parent, device_t self, void *aux) { struct ehci_acpi_softc * const asc = device_private(self); struct ehci_softc * const sc = &asc->sc_ehci; struct acpi_attach_args *aa = aux; struct acpi_resources res; struct acpi_mem *mem; struct acpi_irq *irq; ACPI_STATUS rv; int error; void *ih; acpi_claim_childdevs(self, aa->aa_node); asc->sc_handle = aa->aa_node->ad_handle; sc->sc_dev = self; sc->sc_bus.ub_hcpriv = sc; sc->sc_bus.ub_revision = USBREV_2_0; sc->sc_vendor_init = ehci_acpi_init; rv = acpi_resource_parse(sc->sc_dev, asc->sc_handle, "_CRS", &res, &acpi_resource_parse_ops_default); if (ACPI_FAILURE(rv)) return; sc->sc_ncomp = ehci_acpi_num_companions(aa); if (sc->sc_ncomp == 0) { sc->sc_flags = EHCIF_ETTF; } mem = acpi_res_mem(&res, 0); if (mem == NULL) { aprint_error_dev(self, "couldn't find mem resource\n"); goto done; } irq = acpi_res_irq(&res, 0); if (irq == NULL) { aprint_error_dev(self, "couldn't find irq resource\n"); goto done; } sc->sc_size = mem->ar_length; sc->iot = aa->aa_memt; error = bus_space_map(sc->iot, mem->ar_base, mem->ar_length, 0, &sc->ioh); if (error) { aprint_error_dev(self, "couldn't map registers\n"); goto done; } /* Disable interrupts */ sc->sc_offs = EREAD1(sc, EHCI_CAPLENGTH); EOWRITE4(sc, EHCI_USBINTR, 0); const uint32_t hccparams = EREAD4(sc, EHCI_HCCPARAMS); if (EHCI_HCC_64BIT(hccparams)) { aprint_verbose_dev(self, "64-bit DMA"); if (BUS_DMA_TAG_VALID(aa->aa_dmat64)) { aprint_verbose("\n"); sc->sc_bus.ub_dmatag = aa->aa_dmat64; } else { aprint_verbose(" - limited\n"); sc->sc_bus.ub_dmatag = aa->aa_dmat; } } else { aprint_verbose_dev(self, "32-bit DMA\n"); sc->sc_bus.ub_dmatag = aa->aa_dmat; } ih = acpi_intr_establish(self, (uint64_t)(uintptr_t)aa->aa_node->ad_handle, IPL_USB, true, ehci_intr, sc, device_xname(self)); if (ih == NULL) { aprint_error_dev(self, "couldn't establish interrupt\n"); goto done; } error = ehci_init(sc); if (error) { aprint_error_dev(self, "init failed, error = %d\n", error); acpi_intr_disestablish(ih); goto done; } sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint, CFARGS_NONE); done: acpi_resource_cleanup(&res); } static void ehci_acpi_init(struct ehci_softc *sc) { struct ehci_acpi_softc * const asc = (struct ehci_acpi_softc *)sc; acpi_usb_post_reset(asc->sc_handle); } static int ehci_acpi_port_has_companion(struct acpi_devnode *portad, ACPI_INTEGER portno) { struct acpi_devnode *ad; ACPI_BUFFER portbuf, buf; ACPI_OBJECT *portobj, *obj; ACPI_OBJECT *portpld, *pld; ACPI_STATUS rv; int ncomp = 0; rv = acpi_eval_struct(portad->ad_handle, "_PLD", &portbuf); if (ACPI_FAILURE(rv)) { return 0; } portobj = portbuf.Pointer; if (portobj->Type != ACPI_TYPE_PACKAGE || portobj->Package.Count == 0 || portobj->Package.Elements[0].Type != ACPI_TYPE_BUFFER) { return 0; } portpld = &portobj->Package.Elements[0]; /* * Look through all ACPI device nodes and try to find another * one that matches our _PLD. If we have a match, it means we * have a companion controller somewhere. */ SIMPLEQ_FOREACH(ad, &acpi_softc->sc_head, ad_list) { if (ad == portad) { continue; } rv = acpi_eval_struct(ad->ad_handle, "_PLD", &buf); if (ACPI_FAILURE(rv)) { continue; } obj = buf.Pointer; if (obj->Type == ACPI_TYPE_PACKAGE && obj->Package.Count != 0 && obj->Package.Elements[0].Type == ACPI_TYPE_BUFFER) { pld = &obj->Package.Elements[0]; if (memcmp(pld->Buffer.Pointer, portpld->Buffer.Pointer, pld->Buffer.Length) == 0) { aprint_verbose_dev(portad->ad_device, "companion port: %s\n", acpi_name(ad->ad_handle)); ncomp = 1; } } ACPI_FREE(buf.Pointer); if (ncomp != 0) { break; } } ACPI_FREE(portbuf.Pointer); return ncomp; } static int ehci_acpi_num_companion_ports(struct acpi_devnode *hubad) { struct acpi_devnode *ad; ACPI_STATUS rv; ACPI_INTEGER val; int ncomp = 0; /* Look for child ports with _ADR != 0 */ SIMPLEQ_FOREACH(ad, &hubad->ad_child_head, ad_child_list) { rv = acpi_eval_integer(ad->ad_handle, "_ADR", &val); if (ACPI_SUCCESS(rv) && val != 0) { ncomp += ehci_acpi_port_has_companion(ad, val); } } return ncomp; } static int ehci_acpi_num_companions(struct acpi_attach_args *aa) { struct acpi_devnode *ad; ACPI_STATUS rv; ACPI_INTEGER val; int ncomp = 0; /* Look for a child node with _ADR 0 that represents our root hub. */ SIMPLEQ_FOREACH(ad, &aa->aa_node->ad_child_head, ad_child_list) { rv = acpi_eval_integer(ad->ad_handle, "_ADR", &val); if (ACPI_SUCCESS(rv) && val == 0) { /* * Count the number of ports on this hub. */ ncomp = ehci_acpi_num_companion_ports(ad); break; } } return ncomp; }