/* $NetBSD: locore.s,v 1.110 2024/01/17 12:33:50 thorpej Exp $ */ /* * Copyright (c) 1980, 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: locore.s 1.66 92/12/22$ * @(#)locore.s 8.6 (Berkeley) 5/27/94 */ /* * Copyright (c) 1994, 1995 Gordon W. Ross * Copyright (c) 1993 Adam Glass * Copyright (c) 1988 University of Utah. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: locore.s 1.66 92/12/22$ * @(#)locore.s 8.6 (Berkeley) 5/27/94 */ #include "opt_compat_netbsd.h" #include "opt_compat_sunos.h" #include "opt_kgdb.h" #include "opt_lockdebug.h" #include "assym.h" #include #include | Remember this is a fun project! | This is for kvm_mkdb, and should be the address of the beginning | of the kernel text segment (not necessarily the same as kernbase). .text GLOBAL(kernel_text) | This is the entry point, as well as the end of the temporary stack | used during process switch (one 8K page ending at start) ASGLOBAL(tmpstk) ASGLOBAL(start) | First we need to set it up so we can access the sun MMU, and be otherwise | undisturbed. Until otherwise noted, all code must be position independent | as the boot loader put us low in memory, but we are linked high. movw #PSL_HIGHIPL,%sr | no interrupts moveq #FC_CONTROL,%d0 | make movs access "control" movc %d0,%sfc | space where the sun3 designers movc %d0,%dfc | put all the "useful" stuff | Set context zero and stay there until pmap_bootstrap. moveq #0,%d0 movsb %d0,CONTEXT_REG | In order to "move" the kernel to high memory, we are going to copy the | first 4 Mb of pmegs such that we will be mapped at the linked address. | This is all done by copying in the segment map (top-level MMU table). | We will unscramble which PMEGs we actually need later. movl #(SEGMAP_BASE+0),%a0 | src movl #(SEGMAP_BASE+KERNBASE3),%a1 | dst movl #(0x400000/NBSG),%d0 | count L_per_pmeg: movsb %a0@,%d1 | copy segmap entry movsb %d1,%a1@ addl #NBSG,%a0 | increment pointers addl #NBSG,%a1 subql #1,%d0 | decrement count bgt L_per_pmeg | Kernel is now double mapped at zero and KERNBASE. | Force a long jump to the relocated code (high VA). movl #IC_CLEAR,%d0 | Flush the I-cache movc %d0,%cacr jmp L_high_code:l | long jump L_high_code: | We are now running in the correctly relocated kernel, so | we are no longer restricted to position-independent code. | Do bootstrap stuff needed before main() gets called. | Make sure the initial frame pointer is zero so that | the backtrace algorithm used by KGDB terminates nicely. lea _ASM_LABEL(tmpstk),%sp movl #0,%a6 jsr _C_LABEL(_bootstrap) | See locore2.c | Now that _bootstrap() is done using the PROM functions, | we can safely set the %sfc/dfc to something != FC_CONTROL moveq #FC_USERD,%d0 | make movs access "user data" movc %d0,%sfc | space for copyin/copyout movc %d0,%dfc | Setup process zero user/kernel stacks. lea _C_LABEL(lwp0),%a0 | lwp0 movl %a0@(L_PCB),%a1 | XXXuvm_lwp_getuarea lea %a1@(USPACE-4),%sp | set SSP to last word movl #USRSTACK3-4,%a2 movl %a2,%usp | init user SP | Note curpcb was already set in _bootstrap(). | Will do fpu initialization during autoconfig (see fpu.c) | The interrupt vector table and stack are now ready. | Interrupts will be enabled later, AFTER autoconfiguration | is finished, to avoid spurrious interrupts. /* * Create a fake exception frame so that cpu_lwp_fork() can copy it. * main() nevers returns; we exit to user mode from a forked process * later on. */ clrw %sp@- | tf_format,tf_vector clrl %sp@- | tf_pc (filled in later) movw #PSL_USER,%sp@- | tf_sr for user mode clrl %sp@- | tf_stackadj lea %sp@(-64),%sp | tf_regs[16] movl %a1,%a0@(L_MD_REGS) | lwp0.p_md.md_regs = trapframe jbsr _C_LABEL(main) | main(&trapframe) PANIC("main() returned") | That is all the assembly startup code we need on the sun3! | The rest of this is like the hp300/locore.s where possible. /* * Trap/interrupt vector routines */ #include GLOBAL(buserr) tstl _C_LABEL(nofault) | device probe? jeq _C_LABEL(addrerr) | no, handle as usual movl _C_LABEL(nofault),%sp@- | yes, jbsr _C_LABEL(longjmp) | longjmp(nofault) GLOBAL(addrerr) clrl %sp@- | stack adjust count moveml #0xFFFF,%sp@- | save user registers movl %usp,%a0 | save the user SP movl %a0,%sp@(FR_SP) | in the savearea lea %sp@(FR_HW),%a1 | grab base of HW berr frame moveq #0,%d0 movw %a1@(10),%d0 | grab SSW for fault processing btst #12,%d0 | RB set? jeq LbeX0 | no, test RC bset #14,%d0 | yes, must set FB movw %d0,%a1@(10) | for hardware too LbeX0: btst #13,%d0 | RC set? jeq LbeX1 | no, skip bset #15,%d0 | yes, must set FC movw %d0,%a1@(10) | for hardware too LbeX1: btst #8,%d0 | data fault? jeq Lbe0 | no, check for hard cases movl %a1@(16),%d1 | fault address is as given in frame jra Lbe10 | thats it Lbe0: btst #4,%a1@(6) | long (type B) stack frame? jne Lbe4 | yes, go handle movl %a1@(2),%d1 | no, can use save PC btst #14,%d0 | FB set? jeq Lbe3 | no, try FC addql #4,%d1 | yes, adjust address jra Lbe10 | done Lbe3: btst #15,%d0 | FC set? jeq Lbe10 | no, done addql #2,%d1 | yes, adjust address jra Lbe10 | done Lbe4: movl %a1@(36),%d1 | long format, use stage B address btst #15,%d0 | FC set? jeq Lbe10 | no, all done subql #2,%d1 | yes, adjust address Lbe10: movl %d1,%sp@- | push fault VA movl %d0,%sp@- | and padded SSW movw %a1@(6),%d0 | get frame format/vector offset andw #0x0FFF,%d0 | clear out frame format cmpw #12,%d0 | address error vector? jeq Lisaerr | yes, go to it /* * the sun3 specific code * * our mission: figure out whether what we are looking at is * bus error in the UNIX sense, or * a memory error i.e a page fault * * [this code replaces similarly mmu specific code in the hp300 code] */ sun3_mmu_specific: clrl %d0 | make sure top bits are cleared too movl %d1,%sp@- | save %d1 movc %sfc,%d1 | save %sfc to %d1 moveq #FC_CONTROL,%d0 | %sfc = FC_CONTROL movc %d0,%sfc movsb BUSERR_REG,%d0 | get value of bus error register movc %d1,%sfc | restore %sfc movl %sp@+,%d1 | restore %d1 andb #BUSERR_MMU,%d0 | is this an MMU fault? jeq Lisberr | non-MMU bus error /* End of sun3 specific code. */ Lismerr: movl #T_MMUFLT,%sp@- | show that we are an MMU fault jra _ASM_LABEL(faultstkadj) | and deal with it Lisaerr: movl #T_ADDRERR,%sp@- | mark address error jra _ASM_LABEL(faultstkadj) | and deal with it Lisberr: movl #T_BUSERR,%sp@- | mark bus error jra _ASM_LABEL(faultstkadj) | and deal with it /* * FP exceptions. */ GLOBAL(fpfline) clrl %sp@- | stack adjust count moveml #0xFFFF,%sp@- | save registers moveq #T_FPEMULI,%d0 | denote as FP emulation trap jra _ASM_LABEL(fault) | do it GLOBAL(fpunsupp) clrl %sp@- | stack adjust count moveml #0xFFFF,%sp@- | save registers moveq #T_FPEMULD,%d0 | denote as FP emulation trap jra _ASM_LABEL(fault) | do it /* * Handles all other FP coprocessor exceptions. * Note that since some FP exceptions generate mid-instruction frames * and may cause signal delivery, we need to test for stack adjustment * after the trap call. */ GLOBAL(fpfault) clrl %sp@- | stack adjust count moveml #0xFFFF,%sp@- | save user registers movl %usp,%a0 | and save movl %a0,%sp@(FR_SP) | the user stack pointer clrl %sp@- | no VA arg movl _C_LABEL(curpcb),%a0 | current pcb lea %a0@(PCB_FPCTX),%a0 | address of FP savearea fsave %a0@ | save state tstb %a0@ | null state frame? jeq Lfptnull | yes, safe clrw %d0 | no, need to tweak BIU movb %a0@(1),%d0 | get frame size bset #3,%a0@(0,%d0:w) | set exc_pend bit of BIU Lfptnull: fmovem %fpsr,%sp@- | push fpsr as code argument frestore %a0@ | restore state movl #T_FPERR,%sp@- | push type arg jra _ASM_LABEL(faultstkadj) | call trap and deal with stack cleanup /* * Other exceptions only cause four and six word stack frame and require * no post-trap stack adjustment. */ GLOBAL(badtrap) clrl %sp@- | stack adjust count moveml #0xFFFF,%sp@- | save std frame regs jbsr _C_LABEL(straytrap) | report moveml %sp@+,#0xFFFF | restore regs addql #4,%sp | stack adjust count jra _ASM_LABEL(rei) | all done /* * Trap 0 is for system calls */ GLOBAL(trap0) clrl %sp@- | stack adjust count moveml #0xFFFF,%sp@- | save user registers movl %usp,%a0 | save the user SP movl %a0,%sp@(FR_SP) | in the savearea movl %d0,%sp@- | push syscall number jbsr _C_LABEL(syscall) | handle it addql #4,%sp | pop syscall arg movl %sp@(FR_SP),%a0 | grab and restore movl %a0,%usp | user SP moveml %sp@+,#0x7FFF | restore most registers addql #8,%sp | pop SP and stack adjust jra _ASM_LABEL(rei) | all done /* * Trap 12 is the entry point for the cachectl "syscall" * cachectl(command, addr, length) * command in %d0, addr in %a1, length in %d1 */ GLOBAL(trap12) movl _C_LABEL(curlwp),%a0 movl %a0@(L_PROC),%sp@- | push curproc pointer movl %d1,%sp@- | push length movl %a1,%sp@- | push addr movl %d0,%sp@- | push command jbsr _C_LABEL(cachectl1) | do it lea %sp@(16),%sp | pop args jra _ASM_LABEL(rei) | all done /* * Trace (single-step) trap. Kernel-mode is special. * User mode traps are simply passed on to trap(). */ GLOBAL(trace) clrl %sp@- | stack adjust count moveml #0xFFFF,%sp@- moveq #T_TRACE,%d0 | Check PSW and see what happen. | T=0 S=0 (should not happen) | T=1 S=0 trace trap from user mode | T=0 S=1 trace trap on a trap instruction | T=1 S=1 trace trap from system mode (kernel breakpoint) movw %sp@(FR_HW),%d1 | get PSW notw %d1 | XXX no support for T0 on 680[234]0 andw #PSL_TS,%d1 | from system mode (T=1, S=1)? jeq _ASM_LABEL(kbrkpt) | yes, kernel brkpt jra _ASM_LABEL(fault) | no, user-mode fault /* * Trap 15 is used for: * - GDB breakpoints (in user programs) * - KGDB breakpoints (in the kernel) * - trace traps for SUN binaries (not fully supported yet) * User mode traps are simply passed to trap(). */ GLOBAL(trap15) clrl %sp@- | stack adjust count moveml #0xFFFF,%sp@- moveq #T_TRAP15,%d0 btst #5,%sp@(FR_HW) | was supervisor mode? jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt jra _ASM_LABEL(fault) | no, user-mode fault ASLOCAL(kbrkpt) | Kernel-mode breakpoint or trace trap. (%d0=trap_type) | Save the system sp rather than the user sp. movw #PSL_HIGHIPL,%sr | lock out interrupts lea %sp@(FR_SIZE),%a6 | Save stack pointer movl %a6,%sp@(FR_SP) | from before trap | If we are not on tmpstk switch to it. | (so debugger can change the stack pointer) movl %a6,%d1 cmpl #_ASM_LABEL(tmpstk),%d1 jls Lbrkpt2 | already on tmpstk | Copy frame to the temporary stack movl %sp,%a0 | %a0=src lea _ASM_LABEL(tmpstk)-96,%a1 | %a1=dst movl %a1,%sp | sp=new frame moveq #FR_SIZE,%d1 Lbrkpt1: movl %a0@+,%a1@+ subql #4,%d1 bgt Lbrkpt1 Lbrkpt2: | Call the trap handler for the kernel debugger. | Do not call trap() to handle it, so that we can | set breakpoints in trap() if we want. We know | the trap type is either T_TRACE or T_BREAKPOINT. movl %d0,%sp@- | push trap type jbsr _C_LABEL(trap_kdebug) addql #4,%sp | pop args | The stack pointer may have been modified, or | data below it modified (by kgdb push call), | so push the hardware frame at the current sp | before restoring registers and returning. movl %sp@(FR_SP),%a0 | modified sp lea %sp@(FR_SIZE),%a1 | end of our frame movl %a1@-,%a0@- | copy 2 longs with movl %a1@-,%a0@- | ... predecrement movl %a0,%sp@(FR_SP) | sp = h/w frame moveml %sp@+,#0x7FFF | restore all but sp movl %sp@,%sp | ... and sp rte | all done /* * Interrupt handlers. Most are auto-vectored, * and hard-wired the same way on all sun3 models. * Format in the stack is: * %d0,%d1,%a0,%a1, sr, pc, vo */ /* clock: see clock.c */ #ifdef __ELF__ .align 4 #else .align 2 #endif GLOBAL(_isr_clock) INTERRUPT_SAVEREG jbsr _C_LABEL(clock_intr) INTERRUPT_RESTOREREG jra _ASM_LABEL(rei) /* * Emulation of VAX REI instruction. * * This code is (mostly) un-altered from the hp300 code, * except that sun machines do not need a simulated SIR * because they have a real software interrupt register. * * This code deals with checking for and servicing ASTs * (profiling, scheduling) and software interrupts (network, softclock). * We check for ASTs first, just like the VAX. To avoid excess overhead * the T_ASTFLT handling code will also check for software interrupts so we * do not have to do it here. After identifying that we need an AST we * drop the IPL to allow device interrupts. * * This code is complicated by the fact that sendsig may have been called * necessitating a stack cleanup. */ ASGLOBAL(rei) #ifdef DIAGNOSTIC tstl _C_LABEL(panicstr) | have we panicked? jne Ldorte | yes, do not make matters worse #endif tstl _C_LABEL(astpending) | AST pending? jeq Ldorte | no, done Lrei1: btst #5,%sp@ | yes, are we returning to user mode? jne Ldorte | no, done movw #PSL_LOWIPL,%sr | lower SPL clrl %sp@- | stack adjust moveml #0xFFFF,%sp@- | save all registers movl %usp,%a1 | including movl %a1,%sp@(FR_SP) | the users SP clrl %sp@- | VA == none clrl %sp@- | code == none movl #T_ASTFLT,%sp@- | type == async system trap pea %sp@(12) | fp == address of trap frame jbsr _C_LABEL(trap) | go handle it lea %sp@(16),%sp | pop value args movl %sp@(FR_SP),%a0 | restore user SP movl %a0,%usp | from save area movw %sp@(FR_ADJ),%d0 | need to adjust stack? jne Laststkadj | yes, go to it moveml %sp@+,#0x7FFF | no, restore most user regs addql #8,%sp | toss SP and stack adjust rte | and do real RTE Laststkadj: lea %sp@(FR_HW),%a1 | pointer to HW frame addql #8,%a1 | source pointer movl %a1,%a0 | source addw %d0,%a0 | + hole size = dest pointer movl %a1@-,%a0@- | copy movl %a1@-,%a0@- | 8 bytes movl %a0,%sp@(FR_SP) | new SSP moveml %sp@+,#0x7FFF | restore user registers movl %sp@,%sp | and our SP Ldorte: rte | real return /* * Initialization is at the beginning of this file, because the * kernel entry point needs to be at zero for compatibility with * the Sun boot loader. This works on Sun machines because the * interrupt vector table for reset is NOT at address zero. * (The MMU has a "boot" bit that forces access to the PROM) */ /* * Primitives */ /* * Use common m68k process/lwp switch and context save subroutines. */ #define FPCOPROC /* XXX: Temp. Reqd. */ #include /* suline() */ /* TBIA, TBIS, TBIAS, TBIAU */ /* * Invalidate instruction cache */ ENTRY(ICIA) movl #IC_CLEAR,%d0 movc %d0,%cacr | invalidate i-cache rts /* DCIA, DCIS */ /* * Invalidate data cache. */ ENTRY(DCIU) rts /* ICPL, ICPP, DCPL, DCPP, DCPA, DCFL, DCFP */ /* PCIA, ecacheon, ecacheoff */ /* loadustp, ptest_addr */ /* * _delay(unsigned N) * Delay for at least (N/256) microseconds. * This routine depends on the variable: delay_divisor * which should be set based on the CPU clock rate. * XXX: Currently this is set based on the CPU model, * XXX: but this should be determined at run time... */ GLOBAL(_delay) | %d0 = arg = (usecs << 8) movl %sp@(4),%d0 | %d1 = delay_divisor; movl _C_LABEL(delay_divisor),%d1 jra L_delay /* Jump into the loop! */ /* * Align the branch target of the loop to a half-line (8-byte) * boundary to minimize cache effects. This guarantees both * that there will be no prefetch stalls due to cache line burst * operations and that the loop will run from a single cache * half-line. */ #ifdef __ELF__ .align 8 #else .align 3 #endif L_delay: subl %d1,%d0 jgt L_delay rts /* * void set_segmap_allctx(vaddr_t va, int sme) */ ENTRY(set_segmap_allctx) linkw %fp,#0 moveml #0x3000,%sp@- movl 8(%fp),%d3 | d3 = va andl #0xffffffc,%d3 bset #29,%d3 movl %d3,%a1 | a1 = ctrladdr, d3 avail movl 12(%fp),%d1 | d1 = sme moveq #FC_CONTROL,%d0 movl #CONTEXT_REG,%a0 | a0 = ctxreg movc %sfc,%d3 | d3 = oldsfc movc %d0,%sfc movsb %a0@,%d2 andi #7,%d2 | d2 = oldctx movc %d3,%sfc | restore sfc, d3 avail movc %dfc,%d3 | d3 = olddfc movc %d0,%dfc movl #(CONTEXT_NUM - 1),%d0 | d0 = ctx number 1: movsb %d0,%a0@ | change to ctx movsb %d1,%a1@ | set segmap dbf %d0,1b | loop setting each ctx movsb %d2,%a0@ | restore ctx movc %d3,%dfc | restore dfc moveml %sp@+,#0x000c unlk %fp rts | Define some addresses, mostly so DDB can print useful info. | Not using _C_LABEL() here because these symbols are never | referenced by any C code, and if the leading underscore | ever goes away, these lines turn into syntax errors... .set _KERNBASE3,KERNBASE3 .set _MONSTART,SUN3_MONSTART .set _PROM_BASE,SUN3_PROM_BASE .set _MONEND,SUN3_MONEND |The end!