/* $NetBSD: cpu.h,v 1.134 2023/07/13 12:06:20 riastradh Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)cpu.h 8.4 (Berkeley) 1/5/94 */ #ifndef _CPU_H_ #define _CPU_H_ /* * CTL_MACHDEP definitions. */ #define CPU_BOOTED_KERNEL 1 /* string: booted kernel name */ #define CPU_BOOTED_DEVICE 2 /* string: device booted from */ #define CPU_BOOT_ARGS 3 /* string: args booted with */ #define CPU_ARCH 4 /* integer: cpu architecture version */ #define CPU_VIS 5 /* 0 - no VIS, 1 - VIS 1.0, etc. */ /* * This is exported via sysctl for cpuctl(8). */ struct cacheinfo { int c_itotalsize; int c_ilinesize; int c_dtotalsize; int c_dlinesize; int c_etotalsize; int c_elinesize; }; #if defined(_KERNEL) || defined(_KMEMUSER) /* * Exported definitions unique to SPARC cpu support. */ #if defined(_KERNEL_OPT) #include "opt_gprof.h" #include "opt_multiprocessor.h" #include "opt_lockdebug.h" #endif #include #include #include #include #if defined(_KERNEL) #include #include #include #endif #ifdef SUN4V #include #endif #include #include #include /* * The cpu_info structure is part of a 64KB structure mapped both the kernel * pmap and a single locked TTE a CPUINFO_VA for that particular processor. * Each processor's cpu_info is accessible at CPUINFO_VA only for that * processor. Other processors can access that through an additional mapping * in the kernel pmap. * * The 64KB page contains: * * cpu_info * interrupt stack (all remaining space) * idle PCB * idle stack (STACKSPACE - sizeof(PCB)) * 32KB TSB */ struct cpu_info { struct cpu_data ci_data; /* MI per-cpu data */ /* * SPARC cpu_info structures live at two VAs: one global * VA (so each CPU can access any other CPU's cpu_info) * and an alias VA CPUINFO_VA which is the same on each * CPU and maps to that CPU's cpu_info. Since the alias * CPUINFO_VA is how we locate our cpu_info, we have to * self-reference the global VA so that we can return it * in the curcpu() macro. */ struct cpu_info * volatile ci_self; /* Most important fields first */ struct lwp *ci_curlwp; struct lwp *ci_onproc; /* current user LWP / kthread */ struct pcb *ci_cpcb; struct cpu_info *ci_next; struct lwp *ci_fplwp; void *ci_eintstack; int ci_mtx_count; int ci_mtx_oldspl; /* Spinning up the CPU */ void (*ci_spinup)(void); paddr_t ci_paddr; int ci_cpuid; uint64_t ci_ver; /* CPU PROM information. */ u_int ci_node; const char *ci_name; /* This is for sysctl. */ struct cacheinfo ci_cacheinfo; /* %tick and cpu frequency information */ u_long ci_tick_increment; uint64_t ci_cpu_clockrate[2]; /* %tick */ uint64_t ci_system_clockrate[2]; /* %stick */ /* Interrupts */ struct intrhand *ci_intrpending[16]; struct intrhand *ci_tick_ih; /* Event counters */ struct evcnt ci_tick_evcnt; /* This could be under MULTIPROCESSOR, but there's no good reason */ struct evcnt ci_ipi_evcnt[IPI_EVCNT_NUM]; int ci_flags; int ci_want_ast; int ci_want_resched; int ci_idepth; /* * A context is simply a small number that differentiates multiple mappings * of the same address. Contexts on the spitfire are 13 bits, but could * be as large as 17 bits. * * Each context is either free or attached to a pmap. * * The context table is an array of pointers to psegs. Just dereference * the right pointer and you get to the pmap segment tables. These are * physical addresses, of course. * * ci_ctx_lock protects this CPUs context allocation/free. * These are all allocated almost with in the same cacheline. */ kmutex_t ci_ctx_lock; int ci_pmap_next_ctx; int ci_numctx; paddr_t *ci_ctxbusy; LIST_HEAD(, pmap) ci_pmap_ctxlist; /* * The TSBs are per cpu too (since MMU context differs between * cpus). These are just caches for the TLBs. */ pte_t *ci_tsb_dmmu; pte_t *ci_tsb_immu; /* TSB description (sun4v). */ struct tsb_desc *ci_tsb_desc; /* MMU Fault Status Area (sun4v). * Will be initialized to the physical address of the bottom of * the interrupt stack. */ paddr_t ci_mmufsa; /* * sun4v mondo control fields */ paddr_t ci_cpumq; /* cpu mondo queue address */ paddr_t ci_devmq; /* device mondo queue address */ paddr_t ci_cpuset; /* mondo recipient address */ paddr_t ci_mondo; /* mondo message address */ /* probe fault in PCI config space reads */ bool ci_pci_probe; bool ci_pci_fault; volatile void *ci_ddb_regs; /* DDB regs */ void (*ci_idlespin)(void); #if defined(GPROF) && defined(MULTIPROCESSOR) struct gmonparam *ci_gmon; /* MI per-cpu GPROF */ #endif }; #endif /* _KERNEL || _KMEMUSER */ #ifdef _KERNEL #define CPUF_PRIMARY 1 /* * CPU boot arguments. Used by secondary CPUs at the bootstrap time. */ struct cpu_bootargs { u_int cb_node; /* PROM CPU node */ volatile int cb_flags; vaddr_t cb_ktext; paddr_t cb_ktextp; vaddr_t cb_ektext; vaddr_t cb_kdata; paddr_t cb_kdatap; vaddr_t cb_ekdata; paddr_t cb_cpuinfo; int cb_cputyp; }; extern struct cpu_bootargs *cpu_args; #if defined(MULTIPROCESSOR) extern int sparc_ncpus; #else #define sparc_ncpus 1 #endif extern struct cpu_info *cpus; extern struct pool_cache *fpstate_cache; /* CURCPU_INT() a local (per CPU) view of our cpu_info */ #define CURCPU_INT() ((struct cpu_info *)CPUINFO_VA) /* in general we prefer the globaly visible pointer */ #define curcpu() (CURCPU_INT()->ci_self) #define cpu_number() (curcpu()->ci_index) #define CPU_IS_PRIMARY(ci) ((ci)->ci_flags & CPUF_PRIMARY) #define CPU_INFO_ITERATOR int __unused #define CPU_INFO_FOREACH(cii, ci) ci = cpus; ci != NULL; ci = ci->ci_next /* these are only valid on the local cpu */ #define curlwp CURCPU_INT()->ci_curlwp #define fplwp CURCPU_INT()->ci_fplwp #define curpcb CURCPU_INT()->ci_cpcb #define want_ast CURCPU_INT()->ci_want_ast /* * definitions of cpu-dependent requirements * referenced in generic code */ #define cpu_wait(p) /* nothing */ void cpu_proc_fork(struct proc *, struct proc *); /* run on the cpu itself */ void cpu_pmap_init(struct cpu_info *); /* run upfront to prepare the cpu_info */ void cpu_pmap_prepare(struct cpu_info *, bool); /* Helper functions to retrieve cache info */ int cpu_ecache_associativity(int node); int cpu_ecache_size(int node); #if defined(MULTIPROCESSOR) extern vaddr_t cpu_spinup_trampoline; extern char *mp_tramp_code; extern u_long mp_tramp_code_len; extern u_long mp_tramp_dtlb_slots, mp_tramp_itlb_slots; extern u_long mp_tramp_func; extern u_long mp_tramp_ci; void cpu_hatch(void); void cpu_boot_secondary_processors(void); /* * Call a function on other cpus: * multicast - send to everyone in the sparc64_cpuset_t * broadcast - send to to all cpus but ourselves * send - send to just this cpu * The called function do not follow the C ABI, so need to be coded in * assembler. */ typedef void (* ipifunc_t)(void *, void *); void sparc64_multicast_ipi(sparc64_cpuset_t, ipifunc_t, uint64_t, uint64_t); void sparc64_broadcast_ipi(ipifunc_t, uint64_t, uint64_t); extern void (*sparc64_send_ipi)(int, ipifunc_t, uint64_t, uint64_t); /* * Call an arbitrary C function on another cpu (or all others but ourself) */ typedef void (*ipi_c_call_func_t)(void*); void sparc64_generic_xcall(struct cpu_info*, ipi_c_call_func_t, void*); #endif /* Provide %pc of a lwp */ #define LWP_PC(l) ((l)->l_md.md_tf->tf_pc) /* * Arguments to hardclock, softclock and gatherstats encapsulate the * previous machine state in an opaque clockframe. The ipl is here * as well for strayintr (see locore.s:interrupt and intr.c:strayintr). * Note that CLKF_INTR is valid only if CLKF_USERMODE is false. */ struct clockframe { struct trapframe64 t; }; #define CLKF_USERMODE(framep) (((framep)->t.tf_tstate & TSTATE_PRIV) == 0) #define CLKF_PC(framep) ((framep)->t.tf_pc) /* Since some files in sys/kern do not know BIAS, I'm using 0x7ff here */ #define CLKF_INTR(framep) \ ((!CLKF_USERMODE(framep))&& \ (((framep)->t.tf_out[6] & 1 ) ? \ (((vaddr_t)(framep)->t.tf_out[6] < \ (vaddr_t)EINTSTACK-0x7ff) && \ ((vaddr_t)(framep)->t.tf_out[6] > \ (vaddr_t)INTSTACK-0x7ff)) : \ (((vaddr_t)(framep)->t.tf_out[6] < \ (vaddr_t)EINTSTACK) && \ ((vaddr_t)(framep)->t.tf_out[6] > \ (vaddr_t)INTSTACK)))) /* * Give a profiling tick to the current process when the user profiling * buffer pages are invalid. On the sparc, request an ast to send us * through trap(), marking the proc as needing a profiling tick. */ #define cpu_need_proftick(l) ((l)->l_pflag |= LP_OWEUPC, want_ast = 1) /* * Notify an LWP that it has a signal pending, process as soon as possible. */ void cpu_signotify(struct lwp *); /* * Interrupt handler chains. Interrupt handlers should return 0 for * ``not me'' or 1 (``I took care of it''). intr_establish() inserts a * handler into the list. The handler is called with its (single) * argument, or with a pointer to a clockframe if ih_arg is NULL. */ struct intrhand { int (*ih_fun)(void *); void *ih_arg; /* if we have to take the biglock, we interpose a wrapper * and need to save the original function and arg */ int (*ih_realfun)(void *); void *ih_realarg; short ih_number; /* interrupt number */ /* the H/W provides */ char ih_pil; /* interrupt priority */ struct intrhand *ih_next; /* global list */ struct intrhand *ih_pending; /* interrupt queued */ volatile uint64_t *ih_map; /* Interrupt map reg */ volatile uint64_t *ih_clr; /* clear interrupt reg */ void (*ih_ack)(struct intrhand *); /* ack interrupt function */ bus_space_tag_t ih_bus; /* parent bus */ struct evcnt ih_cnt; /* counter for vmstat */ uint32_t ih_ivec; char ih_name[32]; /* name for the above */ }; extern struct intrhand *intrhand[]; extern struct intrhand *intrlev[MAXINTNUM]; void intr_establish(int level, bool mpsafe, struct intrhand *); void *sparc_softintr_establish(int, int (*)(void *), void *); void sparc_softintr_schedule(void *); void sparc_softintr_disestablish(void *); struct intrhand *intrhand_alloc(void); /* cpu.c */ int cpu_myid(void); /* disksubr.c */ struct dkbad; int isbad(struct dkbad *bt, int, int, int); /* machdep.c */ void * reserve_dumppages(void *); /* clock.c */ struct timeval; int tickintr(void *); /* level 10/14 (tick) interrupt code */ int stickintr(void *); /* system tick interrupt code */ int stick2eintr(void *); /* system tick interrupt code */ int clockintr(void *); /* level 10 (clock) interrupt code */ int statintr(void *); /* level 14 (statclock) interrupt code */ int schedintr(void *); /* level 10 (schedclock) interrupt code */ void tickintr_establish(int, int (*)(void *)); void stickintr_establish(int, int (*)(void *)); void stick2eintr_establish(int, int (*)(void *)); /* locore.s */ struct fpstate64; void savefpstate(struct fpstate64 *); void loadfpstate(struct fpstate64 *); void clearfpstate(void); uint64_t probeget(paddr_t, int, int); int probeset(paddr_t, int, int, uint64_t); void setcputyp(int); #define write_all_windows() __asm volatile("flushw" : : ) #define write_user_windows() __asm volatile("flushw" : : ) struct pcb; void snapshot(struct pcb *); struct frame *getfp(void); void switchtoctx_us(int); void switchtoctx_usiii(int); void next_tick(long); void next_stick(long); void next_stick_init(void); /* trap.c */ void cpu_vmspace_exec(struct lwp *, vaddr_t, vaddr_t); int rwindow_save(struct lwp *); /* cons.c */ int cnrom(void); /* zs.c */ void zsconsole(struct tty *, int, int, void (**)(struct tty *, int)); /* fb.c */ void fb_unblank(void); /* kgdb_stub.c */ #ifdef KGDB void kgdb_attach(int (*)(void *), void (*)(void *, int), void *); void kgdb_connect(int); void kgdb_panic(void); #endif /* emul.c */ int fixalign(struct lwp *, struct trapframe64 *); int emulinstr(vaddr_t, struct trapframe64 *); #endif /* _KERNEL */ #endif /* _CPU_H_ */