/* $NetBSD: rge.c,v 1.8 2021/03/25 03:44:25 rin Exp $ */ /*- * Copyright (c) 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Tohru Nishimura. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "globals.h" /* * - reverse endian access every CSR. * - no vtophys() translation, vaddr_t == paddr_t. * - PIPT writeback cache aware. */ #define CSR_WRITE_1(l, r, v) out8((l)->csr+(r), (v)) #define CSR_READ_1(l, r) in8((l)->csr+(r)) #define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v)) #define CSR_READ_2(l, r) in16rb((l)->csr+(r)) #define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v)) #define CSR_READ_4(l, r) in32rb((l)->csr+(r)) #define VTOPHYS(va) (uint32_t)(va) #define DEVTOV(pa) (uint32_t)(pa) #define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz)) #define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz)) #define DELAY(n) delay(n) #define ALLOC(T,A) (T *)allocaligned(sizeof(T),(A)) struct desc { uint32_t xd0, xd1, xd2, xd3; }; #define T0_OWN 0x80000000 /* loaded for HW to send */ #define T0_EOR 0x40000000 /* end of ring */ #define T0_FS 0x20000000 /* first descriptor */ #define T0_LS 0x10000000 /* last descriptor */ #define T0_FRMASK 0x0000ffff #define R0_OWN 0x80000000 /* empty for HW to load anew */ #define R0_EOR 0x40000000 /* end mark to form a ring */ #define R0_BUFLEN 0x00003ff8 /* max frag. size to receive */ #define R0_FS 0x20000000 /* start of frame */ #define R0_LS 0x10000000 /* end of frame */ #define R0_RES 0x00200000 /* Rx error summary */ #define R0_RUNT 0x00100000 /* runt frame received */ #define R0_CRC 0x00080000 /* CRC error found */ #define R0_FRMASK 0x00003fff /* 13:0 frame length */ #define RGE_IDR0 0x00 /* MAC address [0] */ #define RGE_IDR1 0x01 /* MAC address [1] */ #define RGE_IDR2 0x02 /* MAC address [2] */ #define RGE_IDR3 0x03 /* MAC address [3] */ #define RGE_IDR4 0x04 /* MAC address [4] */ #define RGE_IDR5 0x05 /* MAC address [5] */ #define RGE_TNPDS 0x20 /* Tx descriptor base paddr */ #define RGE_THPDS 0x28 /* high pro. Tx des. base paddr */ #define RGE_CR 0x37 /* command */ #define CR_RESET (1U << 4) /* reset S1C */ #define CR_RXEN (1U << 3) /* Rx enable */ #define CR_TXEN (1U << 2) /* Tx enable */ #define RGE_TPPOLL 0x38 /* activate desc polling */ #define RGE_IMR 0x3c /* interrupt mask */ #define RGE_ISR 0x3e /* interrupt status */ #define RGE_TCR 0x40 /* Tx control */ #define TCR_MAXDMA 0x0700 /* 10:8 Tx DMA burst size */ #define RGE_RCR 0x44 /* Rx control */ #define RCR_RXTFH 0xe000 /* 15:13 Rx FIFO threshold */ #define RCR_MAXDMA 0x0700 /* 10:8 Rx DMA burst size */ #define RCR_AE (1U << 5) /* accept error frame */ #define RCR_RE (1U << 4) /* accept runt frame */ #define RCR_AB (1U << 3) /* accept broadcast frame */ #define RCR_AM (1U << 2) /* accept multicast frame */ #define RCR_APM (1U << 1) /* accept unicast frame */ #define RCR_AAP (1U << 0) /* promiscuous */ #define RGE_EECMD 0x50 /* EEPROM command register */ #define EECMD_LOCK 0x00 #define EECMD_UNLOCK 0xc0 #define RGE_PHYAR 0x60 /* PHY access */ #define RGE_PHYSR 0x6c /* PHY status */ #define RGE_RMS 0xda /* Rx maximum frame size */ #define RGE_RDSAR 0xe4 /* Rx descriptor base paddr */ #define RGE_ETTHR 0xec /* Tx threshold */ #define FRAMESIZE 1536 struct local { struct desc txd[2]; /* 256B align */ uint8_t _hole0[256 - 2 * sizeof(struct desc)]; struct desc rxd[2]; /* 256B align */ uint8_t _hole1[256 - 2 * sizeof(struct desc)]; uint8_t rxstore[2][FRAMESIZE]; unsigned csr, tx, rx; unsigned phy, bmsr, anlpar; unsigned tcr, rcr; }; static int mii_read(struct local *, int, int); static void mii_write(struct local *, int, int, int); static void mii_initphy(struct local *); static void mii_dealan(struct local *, unsigned); int rge_match(unsigned tag, void *data) { unsigned v; v = pcicfgread(tag, PCI_ID_REG); switch (v) { case PCI_DEVICE(0x10ec, 0x8167): case PCI_DEVICE(0x10ec, 0x8169): return 1; } return 0; } void * rge_init(unsigned tag, void *data) { unsigned val; struct local *l; struct desc *txd, *rxd; uint32_t reg; uint8_t *en; l = ALLOC(struct local, 256); /* desc alignment */ memset(l, 0, sizeof(struct local)); l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */ CSR_WRITE_1(l, RGE_CR, CR_RESET); do { val = CSR_READ_1(l, RGE_CR); } while (val & CR_RESET); mii_initphy(l); en = data; if (brdtype == BRD_QNAPTS) { /* read the MAC from flash and write it into the ID-Regs */ read_mac_from_flash(en); CSR_WRITE_1(l, RGE_EECMD, EECMD_UNLOCK); reg = en[0] | (en[1] << 8) | (en[2] << 16) | (en[3] << 24); CSR_WRITE_4(l, RGE_IDR0, reg); reg = en[4] | (en[5] << 8); CSR_WRITE_4(l, RGE_IDR4, reg); CSR_WRITE_1(l, RGE_EECMD, EECMD_LOCK); } else { /* pretent the ID-Regs have the correct address */ en[0] = CSR_READ_1(l, RGE_IDR0); en[1] = CSR_READ_1(l, RGE_IDR1); en[2] = CSR_READ_1(l, RGE_IDR2); en[3] = CSR_READ_1(l, RGE_IDR3); en[4] = CSR_READ_1(l, RGE_IDR4); en[5] = CSR_READ_1(l, RGE_IDR5); } printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n", en[0], en[1], en[2], en[3], en[4], en[5]); DPRINTF(("PHY %d (%04x.%04x)\n", l->phy, mii_read(l, l->phy, 2), mii_read(l, l->phy, 3))); mii_dealan(l, 5); /* speed and duplexity can be seen in PHYSR */ val = CSR_READ_1(l, RGE_PHYSR); if (val & (1U << 4)) printf("1000Mbps"); if (val & (1U << 3)) printf("100Mbps"); if (val & (1U << 2)) printf("10Mbps"); if (val & (1U << 0)) printf("-FDX"); printf("\n"); txd = &l->txd[0]; txd[1].xd0 = htole32(T0_EOR); rxd = &l->rxd[0]; rxd[0].xd0 = htole32(R0_OWN | FRAMESIZE); rxd[0].xd2 = htole32(VTOPHYS(l->rxstore[0])); rxd[1].xd0 = htole32(R0_OWN | R0_EOR | FRAMESIZE); rxd[1].xd2 = htole32(VTOPHYS(l->rxstore[1])); wbinv(l, sizeof(struct local)); l->tx = l->rx = 0; l->tcr = (03 << 24) | (07 << 8); l->rcr = (07 << 13) | (07 << 8) | RCR_APM; CSR_WRITE_1(l, RGE_CR, CR_TXEN | CR_RXEN); CSR_WRITE_1(l, RGE_ETTHR, 0x3f); CSR_WRITE_2(l, RGE_RMS, FRAMESIZE); CSR_WRITE_4(l, RGE_TCR, l->tcr); CSR_WRITE_4(l, RGE_RCR, l->rcr); CSR_WRITE_4(l, RGE_TNPDS, VTOPHYS(txd)); CSR_WRITE_4(l, RGE_RDSAR, VTOPHYS(rxd)); CSR_WRITE_4(l, RGE_TNPDS + 4, 0); CSR_WRITE_4(l, RGE_RDSAR + 4, 0); CSR_WRITE_2(l, RGE_ISR, ~0); CSR_WRITE_2(l, RGE_IMR, 0); return l; } int rge_send(void *dev, char *buf, unsigned len) { struct local *l = dev; volatile struct desc *txd; unsigned loop, ret; char tmp[60]; ret = len; /* RTL does not stretch <60 Tx frame */ if (len < 60) { memcpy(tmp, buf, len); buf = tmp; memset(buf + len, 0, 60 - len); len = 60; } wbinv(buf, len); txd = &l->txd[l->tx]; txd->xd2 = htole32(VTOPHYS(buf)); txd->xd0 &= htole32(T0_EOR); txd->xd0 |= htole32(T0_OWN | T0_FS | T0_LS | (len & T0_FRMASK)); wbinv(txd, sizeof(struct desc)); CSR_WRITE_1(l, RGE_TPPOLL, 0x40); loop = 100; do { if ((le32toh(txd->xd0) & T0_OWN) == 0) goto done; DELAY(10); inv(txd, sizeof(struct desc)); } while (--loop > 0); printf("xmit failed\n"); return -1; done: l->tx ^= 1; return ret; } int rge_recv(void *dev, char *buf, unsigned maxlen, unsigned timo) { struct local *l = dev; volatile struct desc *rxd; unsigned bound, rxstat, len; uint8_t *ptr; bound = 1000 * timo; #if 0 printf("recving with %u sec. timeout\n", timo); #endif again: rxd = &l->rxd[l->rx]; do { inv(rxd, sizeof(struct desc)); rxstat = le32toh(rxd->xd0); if ((rxstat & R0_OWN) == 0) goto gotone; DELAY(1000); /* 1 milli second */ } while (--bound > 0); errno = 0; return -1; gotone: if (rxstat & R0_RES) { rxd->xd0 &= htole32(R0_EOR); rxd->xd0 |= htole32(R0_OWN | FRAMESIZE); wbinv(rxd, sizeof(struct desc)); l->rx ^= 1; goto again; } len = rxstat & R0_FRMASK; if (len > maxlen) len = maxlen; ptr = l->rxstore[l->rx]; inv(ptr, len); memcpy(buf, ptr, len); rxd->xd0 &= htole32(R0_EOR); rxd->xd0 |= htole32(R0_OWN | FRAMESIZE); wbinv(rxd, sizeof(struct desc)); l->rx ^= 1; return len; } static int mii_read(struct local *l, int phy, int reg) { unsigned v; v = reg << 16; CSR_WRITE_4(l, RGE_PHYAR, v); DELAY(1000); do { DELAY(100); v = CSR_READ_4(l, RGE_PHYAR); } while ((v & (1U << 31)) == 0); /* wait for 0 -> 1 */ return v & 0xffff; } static void mii_write(struct local *l, int phy, int reg, int data) { unsigned v; v = (reg << 16) | (data & 0xffff) | (1U << 31); CSR_WRITE_4(l, RGE_PHYAR, v); DELAY(1000); do { DELAY(100); v = CSR_READ_4(l, RGE_PHYAR); } while (v & (1U << 31)); /* wait for 1 -> 0 */ } #define MII_BMCR 0x00 /* Basic mode control register (rw) */ #define BMCR_RESET 0x8000 /* reset */ #define BMCR_AUTOEN 0x1000 /* autonegotiation enable */ #define BMCR_ISO 0x0400 /* isolate */ #define BMCR_STARTNEG 0x0200 /* restart autonegotiation */ #define MII_BMSR 0x01 /* Basic mode status register (ro) */ #define BMSR_ACOMP 0x0020 /* Autonegotiation complete */ #define BMSR_LINK 0x0004 /* Link status */ #define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */ #define ANAR_FC 0x0400 /* local device supports PAUSE */ #define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */ #define ANAR_TX 0x0080 /* local device supports 100bTx */ #define ANAR_10_FD 0x0040 /* local device supports 10bT FD */ #define ANAR_10 0x0020 /* local device supports 10bT */ #define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */ #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */ #define MII_GTCR 0x09 /* 1000baseT control */ #define GANA_1000TFDX 0x0200 /* advertise 1000baseT FDX */ #define GANA_1000THDX 0x0100 /* advertise 1000baseT HDX */ #define MII_GTSR 0x0a /* 1000baseT status */ #define GLPA_1000TFDX 0x0800 /* link partner 1000baseT FDX capable */ #define GLPA_1000THDX 0x0400 /* link partner 1000baseT HDX capable */ #define GLPA_ASM_DIR 0x0200 /* link partner asym. pause dir. capable */ static void mii_initphy(struct local *l) { int bound, ctl, phy, sts; phy = 7; /* internal rgephy, always at 7 */ ctl = mii_read(l, phy, MII_BMCR); mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET); bound = 100; do { DELAY(10); ctl = mii_read(l, phy, MII_BMCR); if (ctl == 0xffff) { printf("MII: PHY %d has died after reset\n", phy); return; } } while (bound-- > 0 && (ctl & BMCR_RESET)); if (bound == 0) { printf("PHY %d reset failed\n", phy); } ctl &= ~BMCR_ISO; mii_write(l, phy, MII_BMCR, ctl); sts = mii_read(l, phy, MII_BMSR) | mii_read(l, phy, MII_BMSR); /* read twice */ l->phy = phy; l->bmsr = sts; } void mii_dealan(struct local *l, unsigned timo) { unsigned anar, gtcr, bound; anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA; anar |= ANAR_FC; gtcr = GANA_1000TFDX | GANA_1000THDX; mii_write(l, l->phy, MII_ANAR, anar); mii_write(l, l->phy, MII_GTCR, gtcr); mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); l->anlpar = 0; bound = getsecs() + timo; do { l->bmsr = mii_read(l, l->phy, MII_BMSR) | mii_read(l, l->phy, MII_BMSR); /* read twice */ if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) { l->anlpar = mii_read(l, l->phy, MII_ANLPAR); break; } DELAY(10 * 1000); } while (getsecs() < bound); return; }