/* $NetBSD: octeon_xhci.c,v 1.9 2022/09/29 07:00:46 skrll Exp $ */ /* $OpenBSD: octxhci.c,v 1.4 2019/09/29 04:32:23 visa Exp $ */ /* * Copyright (c) 2017 Visa Hankala * Copyright (c) 2020 Jared McNeill * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for OCTEON USB3 controller bridge. */ #include #include #include #include #include #include #include #include #include #include #include #include #define XCTL_RD_8(sc, reg) \ bus_space_read_8((sc)->sc_iot, (sc)->sc_ioh, (reg)) #define XCTL_WR_8(sc, reg, val) \ bus_space_write_8((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) struct octxhci_softc { struct xhci_softc sc_xhci; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; struct fdtbus_gpio_pin *sc_power_gpio; int sc_unit; }; static int octxhci_match(device_t, cfdata_t, void *); static void octxhci_attach(device_t, device_t, void *); static int octxhci_dwc3_init(struct xhci_softc *); static void octxhci_uctl_init(struct octxhci_softc *, uint64_t, uint64_t); static void octxhci_bus_io_init(bus_space_tag_t, void *); static struct mips_bus_space octxhci_bus_tag; CFATTACH_DECL_NEW(octxhci, sizeof(struct octxhci_softc), octxhci_match, octxhci_attach, NULL, NULL); static const struct device_compatible_entry compat_data[] = { { .compat = "cavium,octeon-7130-usb-uctl" }, DEVICE_COMPAT_EOL }; int octxhci_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_compatible_match(faa->faa_phandle, compat_data); } void octxhci_attach(device_t parent, device_t self, void *aux) { struct octxhci_softc *osc = device_private(self); struct xhci_softc *sc = &osc->sc_xhci; struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; const char *clock_type_hs; const char *clock_type_ss; u_int clock_freq, clock_sel; char intrstr[128]; int child, error; bus_addr_t addr; bus_size_t size; void *ih; osc->sc_iot = faa->faa_bst; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get bridge registers\n"); return; } if (bus_space_map(osc->sc_iot, addr, size, 0, &osc->sc_ioh) != 0) { aprint_error(": couldn't map bridge registers\n"); return; } osc->sc_power_gpio = fdtbus_gpio_acquire(phandle, "power", GPIO_PIN_OUTPUT); osc->sc_unit = (addr >> 24) & 0x1; octxhci_bus_io_init(&octxhci_bus_tag, NULL); sc->sc_dev = self; sc->sc_bus.ub_hcpriv = sc; sc->sc_bus.ub_dmatag = faa->faa_dmat; sc->sc_iot = &octxhci_bus_tag; sc->sc_ios = size; child = of_find_bycompat(phandle, "synopsys,dwc3"); if (child == -1) { aprint_error(": couldn't find dwc3 child node\n"); return; } if (fdtbus_get_reg(child, 0, &addr, &size) != 0) { aprint_error(": couldn't get xhci registers\n"); return; } if (bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) { aprint_error(": couldn't map xhci registers\n"); return; } if (of_getprop_uint32(phandle, "refclk-frequency", &clock_freq) != 0) { aprint_error(": couldn't get refclk-frequency property\n"); return; } clock_type_hs = fdtbus_get_string(phandle, "refclk-type-hs"); if (clock_type_hs == NULL) { aprint_error(": couldn't get refclk-type-hs property\n"); return; } clock_type_ss = fdtbus_get_string(phandle, "refclk-type-ss"); if (clock_type_ss == NULL) { aprint_error(": couldn't get refclk-type-ss property\n"); return; } clock_sel = 0; if (strcmp(clock_type_ss, "dlmc_ref_clk1") == 0) clock_sel |= 1; if (strcmp(clock_type_hs, "pll_ref_clk") == 0) clock_sel |= 2; octxhci_uctl_init(osc, clock_freq, clock_sel); if (octxhci_dwc3_init(sc) != 0) { /* Error message has been printed already. */ return; } if (!fdtbus_intr_str(child, 0, intrstr, sizeof(intrstr))) { aprint_error_dev(self, "failed to decode interrupt\n"); return; } ih = fdtbus_intr_establish(child, 0, IPL_USB, FDT_INTR_MPSAFE, xhci_intr, sc); if (ih == NULL) { aprint_error_dev(self, "couldn't establish interrupt on %s\n", intrstr); return; } aprint_normal_dev(self, "interrupting on %s\n", intrstr); sc->sc_bus.ub_revision = USBREV_3_0; error = xhci_init(sc); if (error != 0) { aprint_error_dev(self, "init failed, error = %d\n", error); return; } sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint, CFARGS_NONE); sc->sc_child2 = config_found(self, &sc->sc_bus2, usbctlprint, CFARGS_NONE); } void octxhci_uctl_init(struct octxhci_softc *sc, uint64_t clock_freq, uint64_t clock_sel) { static const uint32_t clock_divs[] = { 1, 2, 4, 6, 8, 16, 24, 32 }; uint64_t i, val; uint64_t ioclock = octeon_ioclock_speed(); uint64_t mpll_mult; uint64_t refclk_fsel; #if notyet int output_sel; #endif /* * Put the bridge controller, USB core, PHY, and clock divider * into reset. */ val = XCTL_RD_8(sc, XCTL_CTL); val |= XCTL_CTL_UCTL_RST; val |= XCTL_CTL_UAHC_RST; val |= XCTL_CTL_UPHY_RST; XCTL_WR_8(sc, XCTL_CTL, val); val = XCTL_RD_8(sc, XCTL_CTL); val |= XCTL_CTL_CLKDIV_RST; XCTL_WR_8(sc, XCTL_CTL, val); /* Select IO clock divisor. */ for (i = 0; i < __arraycount(clock_divs); i++) { if (ioclock / clock_divs[i] < 300000000) break; } /* Update the divisor and enable the clock. */ val = XCTL_RD_8(sc, XCTL_CTL); val &= ~XCTL_CTL_CLKDIV_SEL; val |= (i << XCTL_CTL_CLKDIV_SEL_SHIFT) & XCTL_CTL_CLKDIV_SEL; val |= XCTL_CTL_CLK_EN; XCTL_WR_8(sc, XCTL_CTL, val); /* Take the clock divider out of reset. */ val = XCTL_RD_8(sc, XCTL_CTL); val &= ~XCTL_CTL_CLKDIV_RST; XCTL_WR_8(sc, XCTL_CTL, val); /* Select the reference clock. */ switch (clock_freq) { case 50000000: refclk_fsel = 0x07; mpll_mult = 0x32; break; case 125000000: refclk_fsel = 0x07; mpll_mult = 0x28; break; case 100000000: default: if (clock_sel < 2) refclk_fsel = 0x27; else refclk_fsel = 0x07; mpll_mult = 0x19; break; } /* Set the clock and power up PHYs. */ val = XCTL_RD_8(sc, XCTL_CTL); val &= ~XCTL_CTL_REFCLK_SEL; val |= clock_sel << XCTL_CTL_REFCLK_SEL_SHIFT; val &= ~XCTL_CTL_REFCLK_DIV2; val &= ~XCTL_CTL_REFCLK_FSEL; val |= refclk_fsel << XCTL_CTL_REFCLK_FSEL_SHIFT; val &= ~XCTL_CTL_MPLL_MULT; val |= mpll_mult << XCTL_CTL_MPLL_MULT_SHIFT; val |= XCTL_CTL_SSC_EN; val |= XCTL_CTL_REFCLK_SSP_EN; val |= XCTL_CTL_SSPOWER_EN; val |= XCTL_CTL_HSPOWER_EN; XCTL_WR_8(sc, XCTL_CTL, val); delay(100); /* Take the bridge out of reset. */ val = XCTL_RD_8(sc, XCTL_CTL); val &= ~XCTL_CTL_UCTL_RST; XCTL_WR_8(sc, XCTL_CTL, val); delay(100); #if notyet if (sc->sc_power_gpio[0] != 0) { if (sc->sc_unit == 0) output_sel = GPIO_CONFIG_MD_USB0_VBUS_CTRL; else output_sel = GPIO_CONFIG_MD_USB1_VBUS_CTRL; gpio_controller_config_pin(sc->sc_power_gpio, GPIO_CONFIG_OUTPUT | output_sel); /* Enable port power control. */ val = XCTL_RD_8(sc, XCTL_HOST_CFG); val |= XCTL_HOST_CFG_PPC_EN; if (sc->sc_power_gpio[2] & GPIO_ACTIVE_LOW) val &= ~XCTL_HOST_CFG_PPC_ACTIVE_HIGH_EN; else val |= XCTL_HOST_CFG_PPC_ACTIVE_HIGH_EN; XCTL_WR_8(sc, XCTL_HOST_CFG, val); } else { /* Disable port power control. */ val = XCTL_RD_8(sc, XCTL_HOST_CFG); val &= ~XCTL_HOST_CFG_PPC_EN; XCTL_WR_8(sc, XCTL_HOST_CFG, val); } #else /* Disable port power control. */ val = XCTL_RD_8(sc, XCTL_HOST_CFG); val &= ~XCTL_HOST_CFG_PPC_EN; XCTL_WR_8(sc, XCTL_HOST_CFG, val); #endif /* Enable host-only mode. */ val = XCTL_RD_8(sc, XCTL_CTL); val &= ~XCTL_CTL_DRD_MODE; XCTL_WR_8(sc, XCTL_CTL, val); delay(100); /* Take the USB core out of reset. */ val = XCTL_RD_8(sc, XCTL_CTL); val &= ~XCTL_CTL_UAHC_RST; XCTL_WR_8(sc, XCTL_CTL, val); delay(100); val = XCTL_RD_8(sc, XCTL_CTL); val |= XCTL_CTL_CSCLK_EN; XCTL_WR_8(sc, XCTL_CTL, val); /* Take the PHY out of reset. */ val = XCTL_RD_8(sc, XCTL_CTL); val &= ~XCTL_CTL_UPHY_RST; XCTL_WR_8(sc, XCTL_CTL, val); (void)XCTL_RD_8(sc, XCTL_CTL); /* Fix endianness. */ val = XCTL_RD_8(sc, XCTL_SHIM_CFG); val &= ~XCTL_SHIM_CFG_CSR_BYTE_SWAP; val &= ~XCTL_SHIM_CFG_DMA_BYTE_SWAP; val |= __SHIFTIN(XCTL_SHIM_ENDIAN_BIG, XCTL_SHIM_CFG_DMA_BYTE_SWAP); val |= __SHIFTIN(XCTL_SHIM_ENDIAN_BIG, XCTL_SHIM_CFG_CSR_BYTE_SWAP); XCTL_WR_8(sc, XCTL_SHIM_CFG, val); (void)XCTL_RD_8(sc, XCTL_SHIM_CFG); } int octxhci_dwc3_init(struct xhci_softc *sc) { bus_space_handle_t ioh = sc->sc_ioh; uint32_t rev; uint32_t val; val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GSNPSID); if ((val & 0xffff0000u) != 0x55330000u) { aprint_error(": no DWC3 core (DWC3_GSNPSID=%08x)\n", val); return EIO; } rev = val & 0xffffu; aprint_normal(": DWC3 rev 0x%04x\n", rev); val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GUSB3PIPECTL(0)); val &= ~DWC3_GUSB3PIPECTL_UX_EXIT_PX; val |= DWC3_GUSB3PIPECTL_SUSPHY; bus_space_write_4(sc->sc_iot, ioh, DWC3_GUSB3PIPECTL(0), val); val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GUSB2PHYCFG(0)); val |= DWC3_GUSB2PHYCFG_SUSPHY; bus_space_write_4(sc->sc_iot, ioh, DWC3_GUSB2PHYCFG(0), val); /* Set the controller into host mode. */ val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GCTL); val &= ~DWC3_GCTL_PRTCAP_MASK; val |= DWC3_GCTL_PRTCAP_HOST; bus_space_write_4(sc->sc_iot, ioh, DWC3_GCTL, val); val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GCTL); val &= ~DWC3_GCTL_SCALEDOWN_MASK; val &= ~DWC3_GCTL_DISSCRAMBLE; if (rev >= DWC3_REV_210A && rev <= DWC3_REV_250A) val |= DWC3_GCTL_DSBLCLKGTNG | DWC3_GCTL_SOFITPSYNC; else val &= ~DWC3_GCTL_DSBLCLKGTNG; bus_space_write_4(sc->sc_iot, ioh, DWC3_GCTL, val); return 0; } /* ---- bus_space(9) */ #define CHIP octxhci #define CHIP_IO #define CHIP_LITTLE_ENDIAN #define CHIP_W1_BUS_START(v) 0x0000000000000000ULL #define CHIP_W1_BUS_END(v) 0x7fffffffffffffffULL #define CHIP_W1_SYS_START(v) 0x8000000000000000ULL #define CHIP_W1_SYS_END(v) 0xffffffffffffffffULL #include