/* $NetBSD: trap.c,v 1.309 2023/10/05 19:41:04 ad Exp $ */ /*- * Copyright (c) 1998, 2000, 2005, 2006, 2007, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the University of Utah, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)trap.c 7.4 (Berkeley) 5/13/91 */ /* * 386 Trap and System call handling */ #include __KERNEL_RCSID(0, "$NetBSD: trap.c,v 1.309 2023/10/05 19:41:04 ad Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_lockdebug.h" #include "opt_multiprocessor.h" #include "opt_xen.h" #include "opt_dtrace.h" #include "opt_compat_netbsd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mca.h" #if NMCA > 0 #include #endif #include #include #include "isa.h" #include #ifdef KDTRACE_HOOKS #include /* * This is a hook which is initialized by the dtrace module * to handle traps which might occur during DTrace probe * execution. */ dtrace_trap_func_t dtrace_trap_func = NULL; dtrace_doubletrap_func_t dtrace_doubletrap_func = NULL; #endif void trap(struct trapframe *); void trap_tss(struct i386tss *, int, int); void trap_return_fault_return(struct trapframe *) __dead; #ifndef XENPV int ss_shadow(struct trapframe *tf); #endif const char * const trap_type[] = { "privileged instruction fault", /* 0 T_PRIVINFLT */ "breakpoint trap", /* 1 T_BPTFLT */ "arithmetic trap", /* 2 T_ARITHTRAP */ "asynchronous system trap", /* 3 T_ASTFLT */ "protection fault", /* 4 T_PROTFLT */ "trace trap", /* 5 T_TRCTRAP */ "page fault", /* 6 T_PAGEFLT */ "alignment fault", /* 7 T_ALIGNFLT */ "integer divide fault", /* 8 T_DIVIDE */ "non-maskable interrupt", /* 9 T_NMI */ "overflow trap", /* 10 T_OFLOW */ "bounds check fault", /* 11 T_BOUND */ "FPU not available fault", /* 12 T_DNA */ "double fault", /* 13 T_DOUBLEFLT */ "FPU operand fetch fault", /* 14 T_FPOPFLT */ "invalid TSS fault", /* 15 T_TSSFLT */ "segment not present fault", /* 16 T_SEGNPFLT */ "stack fault", /* 17 T_STKFLT */ "machine check fault", /* 18 T_MCA */ "SSE FP exception", /* 19 T_XMM */ "reserved trap", /* 20 T_RESERVED */ }; int trap_types = __arraycount(trap_type); #ifdef DEBUG int trapdebug = 0; #endif #define IDTVEC(name) __CONCAT(X, name) #ifdef TRAP_SIGDEBUG static void sigdebug(const struct trapframe *, const ksiginfo_t *, int); #define SIGDEBUG(a, b, c) sigdebug(a, b, c) #else #define SIGDEBUG(a, b, c) #endif void trap_tss(struct i386tss *tss, int trapno, int code) { struct trapframe tf; tf.tf_gs = tss->tss_gs; tf.tf_fs = tss->tss_fs; tf.tf_es = tss->__tss_es; tf.tf_ds = tss->__tss_ds; tf.tf_edi = tss->__tss_edi; tf.tf_esi = tss->__tss_esi; tf.tf_ebp = tss->tss_ebp; tf.tf_ebx = tss->__tss_ebx; tf.tf_edx = tss->__tss_edx; tf.tf_ecx = tss->__tss_ecx; tf.tf_eax = tss->__tss_eax; tf.tf_trapno = trapno; tf.tf_err = code | TC_TSS; tf.tf_eip = tss->__tss_eip; tf.tf_cs = tss->__tss_cs; tf.tf_eflags = tss->__tss_eflags; tf.tf_esp = tss->tss_esp; tf.tf_ss = tss->__tss_ss; trap(&tf); } static void * onfault_handler(const struct pcb *pcb, const struct trapframe *tf) { struct onfault_table { uintptr_t start; uintptr_t end; void *handler; }; extern const struct onfault_table onfault_table[]; const struct onfault_table *p; uintptr_t pc; if (pcb->pcb_onfault != NULL) { return pcb->pcb_onfault; } pc = tf->tf_eip; for (p = onfault_table; p->start; p++) { if (p->start <= pc && pc < p->end) { return p->handler; } } return NULL; } static void trap_print(const struct trapframe *frame, const lwp_t *l) { const int type = frame->tf_trapno; if (frame->tf_trapno < trap_types) { printf("fatal %s", trap_type[type]); } else { printf("unknown trap %d", type); } printf(" in %s mode\n", (type & T_USER) ? "user" : "supervisor"); printf("trap type %d code %#x eip %#x cs %#x eflags %#x cr2 %#lx " "ilevel %#x esp %#x\n", type, frame->tf_err, frame->tf_eip, frame->tf_cs, frame->tf_eflags, (long)rcr2(), curcpu()->ci_ilevel, frame->tf_esp); printf("curlwp %p pid %d lid %d lowest kstack %p\n", l, l->l_proc->p_pid, l->l_lid, KSTACK_LOWEST_ADDR(l)); } #ifndef XENPV int ss_shadow(struct trapframe *tf) { struct gate_descriptor *gd; struct cpu_info *ci; struct idt_vec *iv; idt_descriptor_t *idt; uintptr_t eip, func; size_t i; eip = tf->tf_eip; ci = curcpu(); iv = idt_vec_ref(&ci->ci_idtvec); idt = iv->iv_idt; for (i = 0; i < 256; i++) { gd = &idt[i]; func = (gd->gd_hioffset << 16) | gd->gd_looffset; if (eip == func) return 1; } return 0; } #endif /* * trap(frame): exception, fault, and trap interface to BSD kernel. * * This common code is called from assembly language IDT gate entry routines * that prepare a suitable stack frame, and restore this frame after the * exception has been processed. Note that the effect is as if the arguments * were passed call by reference. */ void trap(struct trapframe *frame) { struct lwp *l = curlwp; struct proc *p; struct pcb *pcb; extern char kcopy_fault[], return_address_fault[]; struct trapframe *vframe; ksiginfo_t ksi; void *onfault; int type, error = 0; uint32_t cr2; bool pfail; if (__predict_true(l != NULL)) { pcb = lwp_getpcb(l); p = l->l_proc; } else { /* * this can happen eg. on break points in early on boot. */ pcb = NULL; p = NULL; } type = frame->tf_trapno; #ifdef DEBUG if (trapdebug) { trap_print(frame, l); } #endif if (type != T_NMI && !KERNELMODE(frame->tf_cs)) { type |= T_USER; l->l_md.md_regs = frame; pcb->pcb_cr2 = 0; } #ifdef KDTRACE_HOOKS /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in its per-cpu flags to indicate that it doesn't * want to fault. On returning from the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. * * If the DTrace kernel module has registered a trap handler, * call it and if it returns non-zero, assume that it has * handled the trap and modified the trap frame so that this * function can return normally. */ if ((type == T_PROTFLT || type == T_PAGEFLT) && dtrace_trap_func != NULL) { if ((*dtrace_trap_func)(frame, type)) { return; } } #endif switch (type) { default: we_re_toast: trap_print(frame, l); if (kdb_trap(type, 0, frame)) return; if (kgdb_trap(type, frame)) return; /* * If this is a breakpoint, don't panic if we're not connected. */ if (type == T_BPTFLT && kgdb_disconnected()) { printf("kgdb: ignored %s\n", trap_type[type]); return; } panic("trap"); /*NOTREACHED*/ case T_PROTFLT: case T_SEGNPFLT: case T_ALIGNFLT: case T_STKFLT: case T_TSSFLT: if (p == NULL) goto we_re_toast; /* Check for copyin/copyout fault. */ onfault = onfault_handler(pcb, frame); if (onfault != NULL) { copyefault: error = EFAULT; copyfault: frame->tf_eip = (uintptr_t)onfault; frame->tf_eax = error; return; } /* * Check for failure during return to user mode. * This can happen loading invalid values into the segment * registers, or during the 'iret' itself. * * We do this by looking at the instruction we faulted on. * The specific instructions we recognize only happen when * returning from a trap, syscall, or interrupt. */ kernelfault: KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; ksi.ksi_trap = type; switch (*(u_char *)frame->tf_eip) { case 0xcf: /* iret */ /* * The 'iret' instruction faulted, so we have the * 'user' registers saved after the kernel %eip:%cs:%fl * of the 'iret' and below that the user %eip:%cs:%fl * the 'iret' was processing. * We must delete the 3 words of kernel return address * from the stack to generate a normal stack frame * (eg for sending a SIGSEGV). */ vframe = (void *)((int *)frame + 3); if (KERNELMODE(vframe->tf_cs)) goto we_re_toast; memmove(vframe, frame, offsetof(struct trapframe, tf_eip)); /* Set the faulting address to the user %eip */ ksi.ksi_addr = (void *)vframe->tf_eip; break; case 0x8e: switch (*(uint32_t *)frame->tf_eip) { case 0x8e242c8e: /* mov (%esp,%gs), then */ case 0x0424648e: /* mov 0x4(%esp),%fs */ case 0x0824448e: /* mov 0x8(%esp),%es */ case 0x0c245c8e: /* mov 0xc(%esp),%ds */ break; default: goto we_re_toast; } /* * We faulted loading one of the user segment registers. * The stack frame containing the user registers is * still valid and is just below the %eip:%cs:%fl of * the kernel fault frame. */ vframe = (void *)(&frame->tf_eflags + 1); if (KERNELMODE(vframe->tf_cs)) goto we_re_toast; /* There is no valid address for the fault */ break; default: goto we_re_toast; } /* * We might have faulted trying to execute the * trampoline for a local (nested) signal handler. * Only generate SIGSEGV if the user %cs isn't changed. * (This is only strictly necessary in the 'iret' case.) */ if (!pmap_exec_fixup(&p->p_vmspace->vm_map, vframe, pcb)) { /* Save outer frame for any signal return */ l->l_md.md_regs = vframe; SIGDEBUG(vframe, &ksi, error); (*p->p_emul->e_trapsignal)(l, &ksi); } /* Return to user by reloading the user frame */ trap_return_fault_return(vframe); /* NOTREACHED */ case T_PROTFLT|T_USER: /* protection fault */ #if defined(COMPAT_10) || defined(COMPAT_NOMID) { #define LCALLSZ 7 /* Check for the osyscall lcall instruction. */ if (frame->tf_eip < VM_MAXUSER_ADDRESS - LCALLSZ && x86_cpu_is_lcall((const void *)frame->tf_eip) == 0) { /* Advance past the lcall. */ frame->tf_eip += LCALLSZ; /* Do the syscall. */ p->p_md.md_syscall(frame); goto out; } } #endif /* FALLTHROUGH */ case T_TSSFLT|T_USER: case T_SEGNPFLT|T_USER: case T_STKFLT|T_USER: case T_ALIGNFLT|T_USER: KSI_INIT_TRAP(&ksi); ksi.ksi_addr = (void *)rcr2(); switch (type) { case T_SEGNPFLT|T_USER: case T_STKFLT|T_USER: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_ADRERR; break; case T_TSSFLT|T_USER: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; break; case T_ALIGNFLT|T_USER: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_ADRALN; break; case T_PROTFLT|T_USER: /* * If pmap_exec_fixup does something, * let's retry the trap. */ if (pmap_exec_fixup(&p->p_vmspace->vm_map, frame, pcb)){ goto out; } ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; break; default: KASSERT(0); break; } goto trapsignal; case T_PRIVINFLT|T_USER: /* privileged instruction fault */ case T_FPOPFLT|T_USER: /* coprocessor operand fault */ KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGILL; ksi.ksi_addr = (void *) frame->tf_eip; switch (type) { case T_PRIVINFLT|T_USER: ksi.ksi_code = ILL_PRVOPC; break; case T_FPOPFLT|T_USER: ksi.ksi_code = ILL_COPROC; break; default: ksi.ksi_code = 0; break; } goto trapsignal; case T_ASTFLT|T_USER: /* Allow process switch. */ //curcpu()->ci_data.cpu_nast++; if (l->l_pflag & LP_OWEUPC) { l->l_pflag &= ~LP_OWEUPC; ADDUPROF(l); } goto out; case T_BOUND|T_USER: case T_OFLOW|T_USER: case T_DIVIDE|T_USER: KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGFPE; ksi.ksi_addr = (void *)frame->tf_eip; switch (type) { case T_BOUND|T_USER: ksi.ksi_code = FPE_FLTSUB; break; case T_OFLOW|T_USER: ksi.ksi_code = FPE_INTOVF; break; case T_DIVIDE|T_USER: ksi.ksi_code = FPE_INTDIV; break; default: ksi.ksi_code = 0; break; } goto trapsignal; case T_PAGEFLT: /* Allow page faults in kernel mode. */ if (__predict_false(l == NULL)) goto we_re_toast; onfault = pcb->pcb_onfault; if (onfault == return_address_fault) { goto copyefault; } if (cpu_intr_p() || (l->l_pflag & LP_INTR) != 0) { goto we_re_toast; } cr2 = rcr2(); if (frame->tf_err & PGEX_I) { /* SMEP might have brought us here */ if (cr2 > VM_MIN_ADDRESS && cr2 <= VM_MAXUSER_ADDRESS) { printf("prevented execution of %p (SMEP)\n", (void *)cr2); goto we_re_toast; } } if ((frame->tf_err & PGEX_P) && cr2 < VM_MAXUSER_ADDRESS) { /* SMAP might have brought us here */ if (onfault_handler(pcb, frame) == NULL) { printf("prevented access to %p (SMAP)\n", (void *)cr2); goto we_re_toast; } } goto faultcommon; case T_PAGEFLT|T_USER: { /* page fault */ register vaddr_t va; register struct vmspace *vm; register struct vm_map *map; vm_prot_t ftype; extern struct vm_map *kernel_map; cr2 = rcr2(); faultcommon: vm = p->p_vmspace; if (__predict_false(vm == NULL)) { goto we_re_toast; } pcb->pcb_cr2 = cr2; va = trunc_page((vaddr_t)cr2); /* * It is only a kernel address space fault iff: * 1. (type & T_USER) == 0 and * 2. pcb_onfault not set or * 3. pcb_onfault set but supervisor space fault * The last can occur during an exec() copyin where the * argument space is lazy-allocated. */ if (type == T_PAGEFLT && va >= VM_MIN_KERNEL_ADDRESS) map = kernel_map; else map = &vm->vm_map; if (frame->tf_err & PGEX_W) ftype = VM_PROT_WRITE; else if (frame->tf_err & PGEX_I) ftype = VM_PROT_EXECUTE; else ftype = VM_PROT_READ; #ifdef DIAGNOSTIC if (map == kernel_map && va == 0) { printf("trap: bad kernel access at %lx\n", va); goto we_re_toast; } #endif /* Fault the original page in. */ onfault = pcb->pcb_onfault; pcb->pcb_onfault = NULL; error = uvm_fault(map, va, ftype); pcb->pcb_onfault = onfault; if (error == 0) { if (map != kernel_map && (void *)va >= vm->vm_maxsaddr) uvm_grow(p, va); pfail = false; while (type == T_PAGEFLT) { /* * we need to switch pmap now if we're in * the middle of copyin/out. * * but we don't need to do so for kcopy as * it never touch userspace. */ kpreempt_disable(); if (curcpu()->ci_want_pmapload) { onfault = onfault_handler(pcb, frame); if (onfault != kcopy_fault) { pmap_load(); } } /* * We need to keep the pmap loaded and * so avoid being preempted until back * into the copy functions. Disable * interrupts at the hardware level before * re-enabling preemption. Interrupts * will be re-enabled by 'iret' when * returning back out of the trap stub. * They'll only be re-enabled when the * program counter is once again in * the copy functions, and so visible * to cpu_kpreempt_exit(). */ #ifndef XENPV x86_disable_intr(); #endif l->l_nopreempt--; if (l->l_nopreempt > 0 || !l->l_dopreempt || pfail) { return; } #ifndef XENPV x86_enable_intr(); #endif /* * If preemption fails for some reason, * don't retry it. The conditions won't * change under our nose. */ pfail = kpreempt(0); } goto out; } if (type == T_PAGEFLT) { onfault = onfault_handler(pcb, frame); if (onfault != NULL) goto copyfault; printf("uvm_fault(%p, %#lx, %d) -> %#x\n", map, va, ftype, error); goto kernelfault; } KSI_INIT_TRAP(&ksi); ksi.ksi_trap = type & ~T_USER; ksi.ksi_addr = (void *)cr2; switch (error) { case EINVAL: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_ADRERR; break; case EACCES: ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; error = EFAULT; break; case ENOMEM: ksi.ksi_signo = SIGKILL; printf("UVM: pid %d.%d (%s), uid %d killed: " "out of swap\n", p->p_pid, l->l_lid, p->p_comm, l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1); break; default: ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_MAPERR; break; } SIGDEBUG(frame, &ksi, error); (*p->p_emul->e_trapsignal)(l, &ksi); break; } case T_TRCTRAP: /* * Ignore debug register trace traps due to * accesses in the user's address space, which * can happen under several conditions such as * if a user sets a watchpoint on a buffer and * then passes that buffer to a system call. * We still want to get TRCTRAPS for addresses * in kernel space because that is useful when * debugging the kernel. */ if (x86_dbregs_user_trap()) break; goto we_re_toast; case T_BPTFLT|T_USER: /* bpt instruction fault */ case T_TRCTRAP|T_USER: /* trace trap */ /* * Don't go single-stepping into a RAS. */ if (p->p_raslist == NULL || (ras_lookup(p, (void *)frame->tf_eip) == (void *)-1)) { KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGTRAP; ksi.ksi_trap = type & ~T_USER; if (x86_dbregs_user_trap()) { x86_dbregs_store_dr6(l); ksi.ksi_code = TRAP_DBREG; } else if (type == (T_BPTFLT|T_USER)) ksi.ksi_code = TRAP_BRKPT; else ksi.ksi_code = TRAP_TRACE; ksi.ksi_addr = (void *)frame->tf_eip; SIGDEBUG(frame, &ksi, error); (*p->p_emul->e_trapsignal)(l, &ksi); } break; case T_NMI: if (nmi_dispatch(frame)) return; /* NMI can be hooked up to a pushbutton for debugging */ if (kgdb_trap(type, frame)) return; if (kdb_trap(type, 0, frame)) return; /* machine/parity/power fail/"kitchen sink" faults */ #if NMCA > 0 mca_nmi(); #endif x86_nmi(); } if ((type & T_USER) == 0) return; out: userret(l); return; trapsignal: ksi.ksi_trap = type & ~T_USER; SIGDEBUG(frame, &ksi, error); (*p->p_emul->e_trapsignal)(l, &ksi); userret(l); } /* * startlwp: start of a new LWP. */ void startlwp(void *arg) { ucontext_t *uc = arg; lwp_t *l = curlwp; int error __diagused; error = cpu_setmcontext(l, &uc->uc_mcontext, uc->uc_flags); KASSERT(error == 0); kmem_free(uc, sizeof(ucontext_t)); userret(l); } #ifdef TRAP_SIGDEBUG static void frame_dump(const struct trapframe *tf, const struct pcb *pcb) { uint64_t fsd, gsd; printf("trapframe %p\n", tf); printf("eip 0x%08x esp 0x%08x efl 0x%08x\n", tf->tf_eip, tf->tf_esp, tf->tf_eflags); printf("edi 0x%08x esi 0x%08x edx 0x%08x\n", tf->tf_edi, tf->tf_esi, tf->tf_edx); printf("ecx 0x%08x\n", tf->tf_ecx); printf("ebp 0x%08x ebx 0x%08x eax 0x%08x\n", tf->tf_ebp, tf->tf_ebx, tf->tf_eax); printf("cs 0x%04x ds 0x%04x es 0x%04x " "fs 0x%04x gs 0x%04x ss 0x%04x\n", tf->tf_cs & 0xffff, tf->tf_ds & 0xffff, tf->tf_es & 0xffff, tf->tf_fs & 0xffff, tf->tf_gs & 0xffff, tf->tf_ss & 0xffff); memcpy(&fsd, &pcb->pcb_fsd, sizeof(fsd)); memcpy(&gsd, &pcb->pcb_gsd, sizeof(gsd)); printf("fsbase 0x%016llx gsbase 0x%016llx\n", fsd, gsd); printf("\n"); hexdump(printf, "Stack dump", tf, 256); } static void sigdebug(const struct trapframe *tf, const ksiginfo_t *ksi, int e) { struct lwp *l = curlwp; struct proc *p = l->l_proc; printf("pid %d.%d (%s): signal %d code=%d (trap %x) " "@eip %#x addr %#x error=%d\n", p->p_pid, l->l_lid, p->p_comm, ksi->ksi_signo, ksi->ksi_code, tf->tf_trapno, tf->tf_eip, rcr2(), e); frame_dump(tf, lwp_getpcb(l)); } #endif