/* $NetBSD: zynq7000_clkc.c,v 1.5 2022/11/11 20:29:47 jmcneill Exp $ */ /*- * Copyright (c) 2022 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: zynq7000_clkc.c,v 1.5 2022/11/11 20:29:47 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include #define ARM_PLL_CTRL 0x100 #define DDR_PLL_CTRL 0x104 #define IO_PLL_CTRL 0x108 #define PLL_FDIV __BITS(18,12) #define ARM_CLK_CTRL 0x120 #define ARM_CLK_CTRL_CPU_1XCLKACT __BIT(27) #define ARM_CLK_CTRL_CPU_2XCLKACT __BIT(26) #define ARM_CLK_CTRL_CPU_3OR2XCLKACT __BIT(25) #define ARM_CLK_CTRL_CPU_6OR4XCLKACT __BIT(24) #define ARM_CLK_CTRL_DIVISOR __BITS(13,8) #define APER_CLK_CTRL 0x12c #define UART1_CPU_1XCLKACT __BIT(21) #define UART0_CPU_1XCLKACT __BIT(20) #define I2C1_CPU_1XCLKACT __BIT(19) #define I2C0_CPU_1XCLKACT __BIT(18) #define SDI1_CPU_1XCLKACT __BIT(11) #define SDI0_CPU_1XCLKACT __BIT(10) #define SDIO_CLK_CTRL 0x150 #define UART_CLK_CTRL 0x154 #define PCAP_CLK_CTRL 0x168 #define CLK_CTRL_DIVISOR __BITS(13,8) #define CLK_CTRL_SRCSEL __BITS(5,4) #define CLK_CTRL_CLKACT1 __BIT(1) #define CLK_CTRL_CLKACT0 __BIT(0) #define CLK_621_TRUE 0x1C4 #define CLK_621_TRUE_EN __BIT(0) enum xynq7000_clkid { clkid_armpll, clkid_ddrpll, clkid_iopll, clkid_cpu_6or4x, clkid_cpu_3or2x, clkid_cpu_2x, clkid_cpu_1x, clkid_ddr2x, clkid_ddr3x, clkid_dci, clkid_lqspi, clkid_smc, clkid_pcap, clkid_gem0, clkid_gem1, clkid_fclk0, clkid_fclk1, clkid_fclk2, clkid_fclk3, clkid_can0, clkid_can1, clkid_sdio0, clkid_sdio1, clkid_uart0, clkid_uart1, clkid_spi0, clkid_spi1, clkid_dma, clkid_usb0_aper, clkid_usb1_aper, clkid_gem0_aper, clkid_gem1_aper, clkid_sdio0_aper, clkid_sdio1_aper, clkid_spi0_aper, clkid_spi1_aper, clkid_can0_aper, clkid_can1_aper, clkid_i2c0_aper, clkid_i2c1_aper, clkid_uart0_aper, clkid_uart1_aper, clkid_gpio_aper, clkid_lqspi_aper, clkid_smc_aper, clkid_swdt, clkid_dbg_trc, clkid_dbg_apb, num_clkid }; CTASSERT(clkid_dbg_apb == 47); static int zynq7000_clkc_match(device_t, cfdata_t, void *); static void zynq7000_clkc_attach(device_t, device_t, void *); static u_int zynq7000_clkc_clk_get_rate(void *, struct clk *); static const struct device_compatible_entry compat_data[] = { { .compat = "xlnx,ps7-clkc" }, DEVICE_COMPAT_EOL }; struct zynq7000_clkc_softc { device_t sc_dev; struct clk_domain sc_clkdom; struct clk sc_clk[num_clkid]; u_int sc_ps_clk_frequency; struct syscon *sc_syscon; }; CFATTACH_DECL_NEW(zynq7000_clkc, sizeof(struct zynq7000_clkc_softc), zynq7000_clkc_match, zynq7000_clkc_attach, NULL, NULL); static struct clk * zynq7000_clkc_clk_get(void *priv, const char *name) { struct zynq7000_clkc_softc * const sc = priv; u_int clkid; for (clkid = 0; clkid < num_clkid; clkid++) { if (strcmp(name, sc->sc_clk[clkid].name) == 0) { return &sc->sc_clk[clkid]; } } return NULL; } static void zynq7000_clkc_clk_put(void *priv, struct clk *clk) { } static u_int zynq7000_clkc_get_rate_pll(struct zynq7000_clkc_softc *sc, bus_addr_t reg) { uint32_t val; syscon_lock(sc->sc_syscon); val = syscon_read_4(sc->sc_syscon, reg); syscon_unlock(sc->sc_syscon); return sc->sc_ps_clk_frequency * __SHIFTOUT(val, PLL_FDIV); } static u_int zynq7000_clkc_get_rate_iop(struct zynq7000_clkc_softc *sc, bus_addr_t reg) { uint32_t val; u_int prate, sel; syscon_lock(sc->sc_syscon); val = syscon_read_4(sc->sc_syscon, reg); syscon_unlock(sc->sc_syscon); sel = __SHIFTOUT(val, CLK_CTRL_SRCSEL); if (sel == 2) { prate = zynq7000_clkc_clk_get_rate(sc, &sc->sc_clk[clkid_armpll]); } else if (sel == 3) { prate = zynq7000_clkc_clk_get_rate(sc, &sc->sc_clk[clkid_ddrpll]); } else { prate = zynq7000_clkc_clk_get_rate(sc, &sc->sc_clk[clkid_iopll]); } return prate / __SHIFTOUT(val, CLK_CTRL_DIVISOR); } static u_int zynq7000_clkc_clk_get_rate(void *priv, struct clk *clk) { struct zynq7000_clkc_softc * const sc = priv; uint32_t val; u_int prate; if (clk == &sc->sc_clk[clkid_armpll]) { return zynq7000_clkc_get_rate_pll(sc, ARM_PLL_CTRL); } else if (clk == &sc->sc_clk[clkid_iopll]) { return zynq7000_clkc_get_rate_pll(sc, IO_PLL_CTRL); } else if (clk == &sc->sc_clk[clkid_cpu_6or4x]) { prate = zynq7000_clkc_clk_get_rate(sc, &sc->sc_clk[clkid_cpu_1x]); syscon_lock(sc->sc_syscon); val = syscon_read_4(sc->sc_syscon, CLK_621_TRUE); syscon_unlock(sc->sc_syscon); return (val & CLK_621_TRUE_EN) != 0 ? prate * 6 : prate * 4; } else if (clk == &sc->sc_clk[clkid_cpu_3or2x]) { prate = zynq7000_clkc_clk_get_rate(sc, &sc->sc_clk[clkid_cpu_1x]); syscon_lock(sc->sc_syscon); val = syscon_read_4(sc->sc_syscon, CLK_621_TRUE); syscon_unlock(sc->sc_syscon); return (val & CLK_621_TRUE_EN) != 0 ? prate * 3 : prate * 2; } else if (clk == &sc->sc_clk[clkid_cpu_2x]) { prate = zynq7000_clkc_clk_get_rate(sc, &sc->sc_clk[clkid_cpu_1x]); return prate * 2; } else if (clk == &sc->sc_clk[clkid_cpu_1x]) { prate = zynq7000_clkc_clk_get_rate(sc, &sc->sc_clk[clkid_armpll]); syscon_lock(sc->sc_syscon); val = syscon_read_4(sc->sc_syscon, ARM_CLK_CTRL); syscon_unlock(sc->sc_syscon); return prate / __SHIFTOUT(val, ARM_CLK_CTRL_DIVISOR) / 6; } else if (clk == &sc->sc_clk[clkid_sdio0] || clk == &sc->sc_clk[clkid_sdio1]) { return zynq7000_clkc_get_rate_iop(sc, SDIO_CLK_CTRL); } else if (clk == &sc->sc_clk[clkid_uart0] || clk == &sc->sc_clk[clkid_uart1]) { return zynq7000_clkc_get_rate_iop(sc, UART_CLK_CTRL); } else if (clk == &sc->sc_clk[clkid_pcap]) { return zynq7000_clkc_get_rate_iop(sc, PCAP_CLK_CTRL); } else if (clk == &sc->sc_clk[clkid_uart0_aper] || clk == &sc->sc_clk[clkid_uart1_aper] || clk == &sc->sc_clk[clkid_i2c0_aper] || clk == &sc->sc_clk[clkid_i2c1_aper]) { return zynq7000_clkc_clk_get_rate(sc, &sc->sc_clk[clkid_cpu_1x]); } else { /* Not implemented. */ return 0; } } static int zynq7000_clkc_clk_enable(void *priv, struct clk *clk) { struct zynq7000_clkc_softc * const sc = priv; uint32_t val, mask; bus_addr_t reg; if (clk == &sc->sc_clk[clkid_cpu_1x]) { reg = ARM_CLK_CTRL; mask = ARM_CLK_CTRL_CPU_1XCLKACT; } else if (clk == &sc->sc_clk[clkid_cpu_2x]) { reg = ARM_CLK_CTRL; mask = ARM_CLK_CTRL_CPU_2XCLKACT; } else if (clk == &sc->sc_clk[clkid_cpu_3or2x]) { reg = ARM_CLK_CTRL; mask = ARM_CLK_CTRL_CPU_3OR2XCLKACT; } else if (clk == &sc->sc_clk[clkid_cpu_6or4x]) { reg = ARM_CLK_CTRL; mask = ARM_CLK_CTRL_CPU_6OR4XCLKACT; } else if (clk == &sc->sc_clk[clkid_sdio0]) { reg = SDIO_CLK_CTRL; mask = CLK_CTRL_CLKACT0; } else if (clk == &sc->sc_clk[clkid_sdio1]) { reg = SDIO_CLK_CTRL; mask = CLK_CTRL_CLKACT1; } else if (clk == &sc->sc_clk[clkid_uart0]) { reg = UART_CLK_CTRL; mask = CLK_CTRL_CLKACT0; } else if (clk == &sc->sc_clk[clkid_uart1]) { reg = UART_CLK_CTRL; mask = CLK_CTRL_CLKACT1; } else if (clk == &sc->sc_clk[clkid_pcap]) { reg = PCAP_CLK_CTRL; mask = CLK_CTRL_CLKACT0; } else if (clk == &sc->sc_clk[clkid_sdio0_aper]) { reg = APER_CLK_CTRL; mask = SDI0_CPU_1XCLKACT; } else if (clk == &sc->sc_clk[clkid_sdio1_aper]) { reg = APER_CLK_CTRL; mask = SDI1_CPU_1XCLKACT; } else if (clk == &sc->sc_clk[clkid_uart0_aper]) { reg = APER_CLK_CTRL; mask = UART0_CPU_1XCLKACT; } else if (clk == &sc->sc_clk[clkid_uart1_aper]) { reg = APER_CLK_CTRL; mask = UART1_CPU_1XCLKACT; } else if (clk == &sc->sc_clk[clkid_i2c0_aper]) { reg = APER_CLK_CTRL; mask = I2C0_CPU_1XCLKACT; } else if (clk == &sc->sc_clk[clkid_i2c1_aper]) { reg = APER_CLK_CTRL; mask = I2C1_CPU_1XCLKACT; } else { return ENXIO; } syscon_lock(sc->sc_syscon); val = syscon_read_4(sc->sc_syscon, reg); syscon_write_4(sc->sc_syscon, reg, val | mask); syscon_unlock(sc->sc_syscon); return 0; } static int zynq7000_clkc_clk_disable(void *priv, struct clk *clk) { return ENXIO; } static const struct clk_funcs zynq7000_clkc_clk_funcs = { .get = zynq7000_clkc_clk_get, .put = zynq7000_clkc_clk_put, .get_rate = zynq7000_clkc_clk_get_rate, .enable = zynq7000_clkc_clk_enable, .disable = zynq7000_clkc_clk_disable, }; static struct clk * zynq7000_clkc_fdt_decode(device_t dev, int cc_phandle, const void *data, size_t len) { struct zynq7000_clkc_softc * const sc = device_private(dev); u_int clkid; if (len != 4) { return NULL; } clkid = be32dec(data); if (clkid >= num_clkid) { return NULL; } return &sc->sc_clk[clkid]; } static const struct fdtbus_clock_controller_func zynq7000_clkc_fdt_funcs = { .decode = zynq7000_clkc_fdt_decode }; static int zynq7000_clkc_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_compatible_match(faa->faa_phandle, compat_data); } static void zynq7000_clkc_attach(device_t parent, device_t self, void *aux) { struct zynq7000_clkc_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; const char *clkname; bus_addr_t addr; bus_size_t size; u_int clkid; int error; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get registers\n"); return; } sc->sc_dev = self; sc->sc_syscon = fdtbus_syscon_lookup(OF_parent(phandle)); if (sc->sc_syscon == NULL) { aprint_error(": couldn't get syscon registers\n"); return; } error = of_getprop_uint32(phandle, "ps-clk-frequency", &sc->sc_ps_clk_frequency); if (error != 0) { aprint_error(": couldn't get ps-clk-frequency\n"); return; } sc->sc_clkdom.name = device_xname(self); sc->sc_clkdom.funcs = &zynq7000_clkc_clk_funcs; sc->sc_clkdom.priv = sc; for (clkid = 0; clkid < num_clkid; clkid++) { clkname = fdtbus_get_string_index(phandle, "clock-output-names", clkid); sc->sc_clk[clkid].domain = &sc->sc_clkdom; if (clkname != NULL) { sc->sc_clk[clkid].name = kmem_asprintf("%s", clkname); } clk_attach(&sc->sc_clk[clkid]); } aprint_naive("\n"); aprint_normal(": Zynq-7000 PS clock subsystem (PS_CLK %u Hz)\n", sc->sc_ps_clk_frequency); for (clkid = 0; clkid < num_clkid; clkid++) { aprint_debug_dev(self, "clkid %u [%s]: %u Hz\n", clkid, sc->sc_clk[clkid].name ? sc->sc_clk[clkid].name : "", clk_get_rate(&sc->sc_clk[clkid])); } fdtbus_register_clock_controller(self, phandle, &zynq7000_clkc_fdt_funcs); }