/* $NetBSD: sun6i_dma.c,v 1.15 2021/05/05 10:24:04 jmcneill Exp $ */ /*- * Copyright (c) 2014-2017 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_ddb.h" #include __KERNEL_RCSID(0, "$NetBSD: sun6i_dma.c,v 1.15 2021/05/05 10:24:04 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #define DMA_IRQ_EN_REG0_REG 0x0000 #define DMA_IRQ_EN_REG1_REG 0x0004 #define DMA_IRQ_EN_REG0_QUEUE_IRQ_EN(n) __BIT(n * 4 + 2) #define DMA_IRQ_EN_REG0_PKG_IRQ_EN(n) __BIT(n * 4 + 1) #define DMA_IRQ_EN_REG0_HLAF_IRQ_EN(n) __BIT(n * 4 + 0) #define DMA_IRQ_EN_REG1_QUEUE_IRQ_EN(n) __BIT((n - 8) * 4 + 2) #define DMA_IRQ_EN_REG1_PKG_IRQ_EN(n) __BIT((n - 8) * 4 + 1) #define DMA_IRQ_EN_REG1_HLAF_IRQ_EN(n) __BIT((n - 8) * 4 + 0) #define DMA_IRQ_PEND_REG0_REG 0x0010 #define DMA_IRQ_PEND_REG1_REG 0x0014 #define DMA_IRQ_QUEUE_MASK 0x4444444444444444ULL #define DMA_IRQ_PKG_MASK 0x2222222222222222ULL #define DMA_IRQ_HF_MASK 0x1111111111111111ULL #define DMA_STA_REG 0x0030 #define DMA_EN_REG(n) (0x0100 + (n) * 0x40 + 0x00) #define DMA_EN_EN __BIT(0) #define DMA_PAU_REG(n) (0x0100 + (n) * 0x40 + 0x04) #define DMA_PAU_PAUSE __BIT(0) #define DMA_START_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x08) #define DMA_CFG_REG(n) (0x0100 + (n) * 0x40 + 0x0C) #define DMA_CFG_DEST_DATA_WIDTH __BITS(26,25) #define DMA_CFG_DATA_WIDTH(n) ((n) >> 4) #define DMA_CFG_BST_LEN(n) ((n) == 1 ? 0 : (((n) >> 3) + 1)) #define DMA_CFG_DEST_ADDR_MODE __BITS(22,21) #define DMA_CFG_ADDR_MODE_LINEAR 0 #define DMA_CFG_ADDR_MODE_IO 1 #define DMA_CFG_DEST_DRQ_TYPE __BITS(20,16) #define DMA_CFG_DRQ_TYPE_SDRAM 1 #define DMA_CFG_SRC_DATA_WIDTH __BITS(10,9) #define DMA_CFG_SRC_ADDR_MODE __BITS(6,5) #define DMA_CFG_SRC_DRQ_TYPE __BITS(4,0) #define DMA_CUR_SRC_REG(n) (0x0100 + (n) * 0x40 + 0x10) #define DMA_CUR_DEST_REG(n) (0x0100 + (n) * 0x40 + 0x14) #define DMA_BCNT_LEFT_REG(n) (0x0100 + (n) * 0x40 + 0x18) #define DMA_PARA_REG(n) (0x0100 + (n) * 0x40 + 0x1C) #define DMA_PARA_DATA_BLK_SIZE __BITS(15,8) #define DMA_PARA_WAIT_CYC __BITS(7,0) #define DMA_MODE_REG(n) (0x0100 + (n) * 0x40 + 0x28) #define MODE_WAIT 0b0 #define MODE_HANDSHAKE 0b1 #define DMA_MODE_DST(m) __SHIFTIN((m), __BIT(3)) #define DMA_MODE_SRC(m) __SHIFTIN((m), __BIT(2)) #define DMA_FDESC_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x2C) #define DMA_PKG_NUM_REG(n) (0x0100 + (n) * 0x40 + 0x30) struct sun6idma_desc { uint32_t dma_config; uint32_t dma_srcaddr; uint32_t dma_dstaddr; uint32_t dma_bcnt; uint32_t dma_para; uint32_t dma_next; #define DMA_NULL 0xfffff800 }; struct sun6idma_config { u_int num_channels; bool autogate; uint8_t bursts; uint8_t widths; bus_size_t autogate_reg; uint32_t autogate_mask; uint32_t burst_mask; }; #define IL2B(x) __BIT(ilog2(x)) #define IL2B_RANGE(x, y) __BITS(ilog2(x), ilog2(y)) #define WIDTHS_1_2_4 IL2B_RANGE(4, 1) #define WIDTHS_1_2_4_8 IL2B_RANGE(8, 1) #define BURSTS_1_8 (IL2B(8)|IL2B(1)) #define BURSTS_1_4_8_16 (IL2B(16)|IL2B(8)|IL2B(4)|IL2B(1)) static const struct sun6idma_config sun6i_a31_dma_config = { .num_channels = 16, .burst_mask = __BITS(8,7), .bursts = BURSTS_1_8, .widths = WIDTHS_1_2_4, }; static const struct sun6idma_config sun8i_a83t_dma_config = { .num_channels = 8, .autogate = true, .autogate_reg = 0x20, .autogate_mask = 0x4, .burst_mask = __BITS(8,7), .bursts = BURSTS_1_8, .widths = WIDTHS_1_2_4, }; static const struct sun6idma_config sun8i_h3_dma_config = { .num_channels = 12, .autogate = true, .autogate_reg = 0x28, .autogate_mask = 0x4, .burst_mask = __BITS(7,6), .bursts = BURSTS_1_4_8_16, .widths = WIDTHS_1_2_4_8, }; static const struct sun6idma_config sun8i_v3s_dma_config = { .num_channels = 8, .autogate = true, .autogate_reg = 0x20, .autogate_mask = 0x4, .burst_mask = __BITS(8,7), .bursts = BURSTS_1_8, .widths = WIDTHS_1_2_4, }; static const struct sun6idma_config sun50i_a64_dma_config = { .num_channels = 8, .autogate = true, .autogate_reg = 0x28, .autogate_mask = 0x4, .burst_mask = __BITS(7,6), .bursts = BURSTS_1_4_8_16, .widths = WIDTHS_1_2_4_8, }; static const struct device_compatible_entry compat_data[] = { { .compat = "allwinner,sun6i-a31-dma", .data = &sun6i_a31_dma_config }, { .compat = "allwinner,sun8i-a83t-dma", .data = &sun8i_a83t_dma_config }, { .compat = "allwinner,sun8i-h3-dma", .data = &sun8i_h3_dma_config }, { .compat = "allwinner,sun8i-v3s-dma", .data = &sun8i_v3s_dma_config }, { .compat = "allwinner,sun50i-a64-dma", .data = &sun50i_a64_dma_config }, DEVICE_COMPAT_EOL }; struct sun6idma_channel { uint8_t ch_index; void (*ch_callback)(void *); void *ch_callbackarg; u_int ch_portid; void *ch_dmadesc; }; struct sun6idma_softc { device_t sc_dev; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; bus_dma_tag_t sc_dmat; int sc_phandle; void *sc_ih; uint32_t sc_burst_mask; kmutex_t sc_lock; struct sun6idma_channel *sc_chan; u_int sc_nchan; u_int sc_ndesc_ch; uint8_t sc_widths; uint8_t sc_bursts; bus_dma_segment_t sc_dmasegs[1]; bus_dmamap_t sc_dmamap; void *sc_dmadescs; }; #define DMA_READ(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define DMA_WRITE(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) #define DESC_NUM ((MAXPHYS / MIN_PAGE_SIZE + 1) + 1) #define DESC_LEN(n) \ (sizeof(struct sun6idma_desc) * (n)) #define DESC_OFFS(ch, n) \ ((ch) * roundup2(DESC_LEN(DESC_NUM), COHERENCY_UNIT) + DESC_LEN(n)) #define DESC_ADDR(sc, chp, n) \ ((sc)->sc_dmamap->dm_segs[0].ds_addr + DESC_OFFS((chp)->ch_index, (n))) static void * sun6idma_acquire(device_t dev, const void *data, size_t len, void (*cb)(void *), void *cbarg) { struct sun6idma_softc *sc = device_private(dev); struct sun6idma_channel *ch = NULL; uint32_t irqen; uint8_t index; if (len != 4) return NULL; const u_int portid = be32dec(data); if (portid > __SHIFTOUT_MASK(DMA_CFG_SRC_DRQ_TYPE)) return NULL; mutex_enter(&sc->sc_lock); for (index = 0; index < sc->sc_nchan; index++) { if (sc->sc_chan[index].ch_callback == NULL) { ch = &sc->sc_chan[index]; ch->ch_callback = cb; ch->ch_callbackarg = cbarg; ch->ch_portid = portid; irqen = DMA_READ(sc, index < 8 ? DMA_IRQ_EN_REG0_REG : DMA_IRQ_EN_REG1_REG); irqen |= (index < 8 ? DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) : DMA_IRQ_EN_REG1_PKG_IRQ_EN(index)); DMA_WRITE(sc, index < 8 ? DMA_IRQ_EN_REG0_REG : DMA_IRQ_EN_REG1_REG, irqen); break; } } mutex_exit(&sc->sc_lock); return ch; } static void sun6idma_release(device_t dev, void *priv) { struct sun6idma_softc *sc = device_private(dev); struct sun6idma_channel *ch = priv; uint32_t irqen; uint8_t index = ch->ch_index; mutex_enter(&sc->sc_lock); irqen = DMA_READ(sc, index < 8 ? DMA_IRQ_EN_REG0_REG : DMA_IRQ_EN_REG1_REG); irqen &= ~(index < 8 ? DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) : DMA_IRQ_EN_REG1_PKG_IRQ_EN(index)); DMA_WRITE(sc, index < 8 ? DMA_IRQ_EN_REG0_REG : DMA_IRQ_EN_REG1_REG, irqen); ch->ch_callback = NULL; ch->ch_callbackarg = NULL; mutex_exit(&sc->sc_lock); } static int sun6idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req) { struct sun6idma_softc *sc = device_private(dev); struct sun6idma_channel *ch = priv; struct sun6idma_desc *desc = ch->ch_dmadesc; uint32_t src, dst, len, cfg, mem_cfg, dev_cfg; uint32_t mem_width, dev_width, mem_burst, dev_burst; if (req->dreq_nsegs > sc->sc_ndesc_ch) return EINVAL; if ((sc->sc_widths & IL2B(req->dreq_mem_opt.opt_bus_width/NBBY)) == 0) return EINVAL; if ((sc->sc_widths & IL2B(req->dreq_dev_opt.opt_bus_width/NBBY)) == 0) return EINVAL; if ((sc->sc_bursts & IL2B(req->dreq_mem_opt.opt_burst_len)) == 0) return EINVAL; if ((sc->sc_bursts & IL2B(req->dreq_dev_opt.opt_burst_len)) == 0) return EINVAL; mem_width = DMA_CFG_DATA_WIDTH(req->dreq_mem_opt.opt_bus_width); dev_width = DMA_CFG_DATA_WIDTH(req->dreq_dev_opt.opt_bus_width); mem_burst = DMA_CFG_BST_LEN(req->dreq_mem_opt.opt_burst_len); dev_burst = DMA_CFG_BST_LEN(req->dreq_dev_opt.opt_burst_len); mem_cfg = __SHIFTIN(mem_width, DMA_CFG_SRC_DATA_WIDTH) | __SHIFTIN(mem_burst, sc->sc_burst_mask) | __SHIFTIN(DMA_CFG_ADDR_MODE_LINEAR, DMA_CFG_SRC_ADDR_MODE) | __SHIFTIN(DMA_CFG_DRQ_TYPE_SDRAM, DMA_CFG_SRC_DRQ_TYPE); dev_cfg = __SHIFTIN(dev_width, DMA_CFG_SRC_DATA_WIDTH) | __SHIFTIN(dev_burst, sc->sc_burst_mask) | __SHIFTIN(DMA_CFG_ADDR_MODE_IO, DMA_CFG_SRC_ADDR_MODE) | __SHIFTIN(ch->ch_portid, DMA_CFG_SRC_DRQ_TYPE); for (size_t j = 0; j < req->dreq_nsegs; j++) { if (req->dreq_dir == FDT_DMA_READ) { src = req->dreq_dev_phys; dst = req->dreq_segs[j].ds_addr; cfg = mem_cfg << 16 | dev_cfg; } else { src = req->dreq_segs[j].ds_addr; dst = req->dreq_dev_phys; cfg = dev_cfg << 16 | mem_cfg; } len = req->dreq_segs[j].ds_len; desc[j].dma_config = htole32(cfg); desc[j].dma_srcaddr = htole32(src); desc[j].dma_dstaddr = htole32(dst); desc[j].dma_bcnt = htole32(len); desc[j].dma_para = htole32(0); if (j < req->dreq_nsegs - 1) desc[j].dma_next = htole32(DESC_ADDR(sc, ch, j + 1)); else desc[j].dma_next = htole32(DMA_NULL); } #if notyet && maybenever DMA_WRITE(sc, DMA_MODE_REG(ch->ch_index), DMA_MODE_DST(MODE_HANDSHAKE)|DMA_MODE_SRC(MODE_HANDSHAKE)); #endif bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, DESC_OFFS(ch->ch_index, 0), DESC_LEN(req->dreq_nsegs), BUS_DMASYNC_PREWRITE); DMA_WRITE(sc, DMA_START_ADDR_REG(ch->ch_index), DESC_ADDR(sc, ch, 0)); DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), DMA_EN_EN); if ((DMA_READ(sc, DMA_EN_REG(ch->ch_index)) & DMA_EN_EN) == 0) { aprint_error_dev(sc->sc_dev, "DMA Channel %u failed to start\n", ch->ch_index); return EIO; } return 0; } static void sun6idma_halt(device_t dev, void *priv) { struct sun6idma_softc *sc = device_private(dev); struct sun6idma_channel *ch = priv; DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), 0); } static const struct fdtbus_dma_controller_func sun6idma_funcs = { .acquire = sun6idma_acquire, .release = sun6idma_release, .transfer = sun6idma_transfer, .halt = sun6idma_halt }; static int sun6idma_intr(void *priv) { struct sun6idma_softc *sc = priv; uint32_t pend0, pend1, bit; uint64_t pend, mask; uint8_t index; pend0 = DMA_READ(sc, DMA_IRQ_PEND_REG0_REG); pend1 = DMA_READ(sc, DMA_IRQ_PEND_REG1_REG); if (!pend0 && !pend1) return 0; DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, pend0); DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, pend1); pend = pend0 | ((uint64_t)pend1 << 32); while ((bit = ffs64(pend & DMA_IRQ_PKG_MASK)) != 0) { mask = __BIT(bit - 1); pend &= ~mask; index = (bit - 1) / 4; if (sc->sc_chan[index].ch_callback == NULL) continue; sc->sc_chan[index].ch_callback( sc->sc_chan[index].ch_callbackarg); } return 1; } static int sun6idma_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_compatible_match(faa->faa_phandle, compat_data); } static void sun6idma_attach(device_t parent, device_t self, void *aux) { struct sun6idma_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; size_t desclen; const struct sun6idma_config *conf; struct fdtbus_reset *rst; struct clk *clk; char intrstr[128]; bus_addr_t addr; bus_size_t size; int error, nsegs; u_int index; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get registers\n"); return; } if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL || clk_enable(clk) != 0) { aprint_error(": couldn't enable clock\n"); return; } if ((rst = fdtbus_reset_get_index(phandle, 0)) == NULL || fdtbus_reset_deassert(rst) != 0) { aprint_error(": couldn't de-assert reset\n"); return; } sc->sc_dev = self; sc->sc_phandle = phandle; sc->sc_dmat = faa->faa_dmat; sc->sc_bst = faa->faa_bst; if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { aprint_error(": couldn't map registers\n"); return; } mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED); if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { aprint_error(": failed to decode interrupt\n"); return; } conf = of_compatible_lookup(phandle, compat_data)->data; sc->sc_burst_mask = conf->burst_mask; sc->sc_nchan = conf->num_channels; sc->sc_widths = conf->widths; sc->sc_bursts = conf->bursts; sc->sc_chan = kmem_alloc(sizeof(*sc->sc_chan) * sc->sc_nchan, KM_SLEEP); desclen = DESC_OFFS(sc->sc_nchan, 0); sc->sc_ndesc_ch = DESC_OFFS(1, 0) / sizeof(struct sun6idma_desc); aprint_naive("\n"); aprint_normal(": DMA controller (%u channels)\n", sc->sc_nchan); DMA_WRITE(sc, DMA_IRQ_EN_REG0_REG, 0); DMA_WRITE(sc, DMA_IRQ_EN_REG1_REG, 0); DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, ~0); DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, ~0); error = bus_dmamem_alloc(sc->sc_dmat, desclen, 0, 0, sc->sc_dmasegs, 1, &nsegs, BUS_DMA_WAITOK); if (error) panic("bus_dmamem_alloc failed: %d", error); error = bus_dmamem_map(sc->sc_dmat, sc->sc_dmasegs, nsegs, desclen, (void **)&sc->sc_dmadescs, BUS_DMA_WAITOK); if (error) panic("bus_dmamem_map failed: %d", error); error = bus_dmamap_create(sc->sc_dmat, desclen, 1, desclen, 0, BUS_DMA_WAITOK, &sc->sc_dmamap); if (error) panic("bus_dmamap_create failed: %d", error); error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_dmadescs, desclen, NULL, BUS_DMA_WAITOK); if (error) panic("bus_dmamap_load failed: %d", error); for (index = 0; index < sc->sc_nchan; index++) { struct sun6idma_channel *ch = &sc->sc_chan[index]; ch->ch_index = index; ch->ch_dmadesc = (void *)((uintptr_t)sc->sc_dmadescs + DESC_OFFS(index, 0)); ch->ch_callback = NULL; ch->ch_callbackarg = NULL; DMA_WRITE(sc, DMA_EN_REG(index), 0); } if (conf->autogate) DMA_WRITE(sc, conf->autogate_reg, conf->autogate_mask); sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_SCHED, FDT_INTR_MPSAFE, sun6idma_intr, sc, device_xname(sc->sc_dev)); if (sc->sc_ih == NULL) { aprint_error_dev(sc->sc_dev, "couldn't establish interrupt on %s\n", intrstr); return; } aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr); fdtbus_register_dma_controller(self, phandle, &sun6idma_funcs); } CFATTACH_DECL_NEW(sun6i_dma, sizeof(struct sun6idma_softc), sun6idma_match, sun6idma_attach, NULL, NULL); #ifdef DDB void sun6idma_dump(void); void sun6idma_dump(void) { struct sun6idma_softc *sc; device_t dev; u_int index; dev = device_find_by_driver_unit("sun6idma", 0); if (dev == NULL) return; sc = device_private(dev); device_printf(dev, "DMA_IRQ_EN_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG0_REG)); device_printf(dev, "DMA_IRQ_EN_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG1_REG)); device_printf(dev, "DMA_IRQ_PEND_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG0_REG)); device_printf(dev, "DMA_IRQ_PEND_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG1_REG)); device_printf(dev, "DMA_STA_REG: %08x\n", DMA_READ(sc, DMA_STA_REG)); for (index = 0; index < sc->sc_nchan; index++) { struct sun6idma_channel *ch = &sc->sc_chan[index]; if (ch->ch_callback == NULL) continue; device_printf(dev, " %2d: DMA_EN_REG: %08x\n", index, DMA_READ(sc, DMA_EN_REG(index))); device_printf(dev, " %2d: DMA_PAU_REG: %08x\n", index, DMA_READ(sc, DMA_PAU_REG(index))); device_printf(dev, " %2d: DMA_START_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_START_ADDR_REG(index))); device_printf(dev, " %2d: DMA_CFG_REG: %08x\n", index, DMA_READ(sc, DMA_CFG_REG(index))); device_printf(dev, " %2d: DMA_CUR_SRC_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_SRC_REG(index))); device_printf(dev, " %2d: DMA_CUR_DEST_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_DEST_REG(index))); device_printf(dev, " %2d: DMA_BCNT_LEFT_REG: %08x\n", index, DMA_READ(sc, DMA_BCNT_LEFT_REG(index))); device_printf(dev, " %2d: DMA_PARA_REG: %08x\n", index, DMA_READ(sc, DMA_PARA_REG(index))); device_printf(dev, " %2d: DMA_MODE_REG: %08x\n", index, DMA_READ(sc, DMA_MODE_REG(index))); device_printf(dev, " %2d: DMA_FDESC_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_FDESC_ADDR_REG(index))); device_printf(dev, " %2d: DMA_PKG_NUM_REG: %08x\n", index, DMA_READ(sc, DMA_PKG_NUM_REG(index))); } } #endif