/* $NetBSD: sun4i_spi.c,v 1.7 2021/01/27 03:10:20 thorpej Exp $ */ /* * Copyright (c) 2019 Tobias Nygren * Copyright (c) 2018 Jonathan A. Kollasch * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: sun4i_spi.c,v 1.7 2021/01/27 03:10:20 thorpej Exp $"); #include #include #include #include #include #include #include #include #include #include static const struct device_compatible_entry compat_data[] = { { .compat = "allwinner,sun4i-a10-spi" }, DEVICE_COMPAT_EOL }; struct sun4ispi_softc { device_t sc_dev; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; void *sc_intrh; struct spi_controller sc_spi; SIMPLEQ_HEAD(,spi_transfer) sc_q; struct spi_transfer *sc_transfer; struct spi_chunk *sc_rchunk, *sc_wchunk; uint32_t sc_CTL; u_int sc_modclkrate; volatile bool sc_running; }; #define SPIREG_READ(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define SPIREG_WRITE(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) static struct spi_controller * sun4i_spi_get_controller(device_t); static int sun4ispi_match(device_t, cfdata_t, void *); static void sun4ispi_attach(device_t, device_t, void *); static int sun4ispi_configure(void *, int, int, int); static int sun4ispi_transfer(void *, struct spi_transfer *); static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const, size_t); static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const, size_t); static void sun4ispi_rxtx(struct sun4ispi_softc * const); static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const); static void sun4ispi_start(struct sun4ispi_softc * const); static int sun4ispi_intr(void *); CFATTACH_DECL_NEW(sun4i_spi, sizeof(struct sun4ispi_softc), sun4ispi_match, sun4ispi_attach, NULL, NULL); static const struct fdtbus_spi_controller_func sun4i_spi_funcs = { .get_controller = sun4i_spi_get_controller }; static struct spi_controller * sun4i_spi_get_controller(device_t dev) { struct sun4ispi_softc * const sc = device_private(dev); return &sc->sc_spi; } static int sun4ispi_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_compatible_match(faa->faa_phandle, compat_data); } static void sun4ispi_attach(device_t parent, device_t self, void *aux) { struct sun4ispi_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; bus_addr_t addr; bus_size_t size; struct clk *clk, *modclk; char intrstr[128]; sc->sc_dev = self; sc->sc_bst = faa->faa_bst; SIMPLEQ_INIT(&sc->sc_q); if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL || clk_enable(clk) != 0) { aprint_error(": couldn't enable clock\n"); return; } if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL || clk_set_rate(modclk, clk_get_rate(clk)) != 0 || clk_enable(modclk) != 0) { aprint_error(": couldn't enable module clock\n"); return; } sc->sc_modclkrate = clk_get_rate(modclk); if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0 || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { aprint_error(": couldn't map registers\n"); return; } SPIREG_WRITE(sc, SPI_CTL, SPI_CTL_SSPOL | SPI_CTL_RF_RST | SPI_CTL_TF_RST | SPI_CTL_MODE); SPIREG_WRITE(sc, SPI_DMACTL, 0); SPIREG_WRITE(sc, SPI_WAIT, 0); SPIREG_WRITE(sc, SPI_INTCTL, 0); SPIREG_WRITE(sc, SPI_INT_STA, ~0); if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { aprint_error(": failed to decode interrupt\n"); return; } sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0, sun4ispi_intr, sc, device_xname(self)); if (sc->sc_intrh == NULL) { aprint_error(": unable to establish interrupt\n"); return; } aprint_naive("\n"); aprint_normal(": SPI\n"); aprint_normal_dev(self, "interrupting on %s\n", intrstr); sc->sc_spi.sct_cookie = sc; sc->sc_spi.sct_configure = sun4ispi_configure; sc->sc_spi.sct_transfer = sun4ispi_transfer; (void) of_getprop_uint32(phandle, "num-cs", &sc->sc_spi.sct_nslaves); fdtbus_register_spi_controller(self, phandle, &sun4i_spi_funcs); (void) fdtbus_attach_spibus(self, phandle, spibus_print); } static int sun4ispi_configure(void *cookie, int slave, int mode, int speed) { struct sun4ispi_softc * const sc = cookie; uint32_t ctl, cctl; uint32_t minfreq, maxfreq; minfreq = sc->sc_modclkrate >> 16; maxfreq = sc->sc_modclkrate >> 1; if (speed <= 0 || speed < minfreq || speed > maxfreq) return EINVAL; if (slave >= sc->sc_spi.sct_nslaves) return EINVAL; ctl = SPI_CTL_SDM | SPI_CTL_TP_EN | SPI_CTL_SSPOL | SPI_CTL_MODE | SPI_CTL_EN; switch (mode) { case SPI_MODE_0: ctl |= 0; break; case SPI_MODE_1: ctl |= SPI_CTL_PHA; break; case SPI_MODE_2: ctl |= SPI_CTL_POL; break; case SPI_MODE_3: ctl |= SPI_CTL_PHA | SPI_CTL_POL; break; default: return EINVAL; } if (speed < sc->sc_modclkrate / 512) { for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) { if ((sc->sc_modclkrate / (1 << cctl)) <= speed) goto cdr1_found; } return EINVAL; cdr1_found: cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1); } else { cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1; cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2); } device_printf(sc->sc_dev, "ctl 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n", ctl, cctl, sc->sc_modclkrate, (cctl & SPI_CCTL_DRS) ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1))) : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1)) ); sc->sc_CTL = ctl; SPIREG_WRITE(sc, SPI_CTL, (ctl | SPI_CTL_RF_RST | SPI_CTL_TF_RST) & ~SPI_CTL_EN); SPIREG_WRITE(sc, SPI_CCTL, cctl); SPIREG_WRITE(sc, SPI_CTL, ctl); return 0; } static int sun4ispi_transfer(void *cookie, struct spi_transfer *st) { struct sun4ispi_softc * const sc = cookie; int s; s = splbio(); spi_transq_enqueue(&sc->sc_q, st); if (sc->sc_running == false) { sun4ispi_start(sc); } splx(s); return 0; } static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc, size_t maxlen) { struct spi_chunk *chunk = sc->sc_wchunk; size_t len; uint8_t b; if (chunk == NULL) return; len = MIN(maxlen, chunk->chunk_wresid); chunk->chunk_wresid -= len; while (len--) { if (chunk->chunk_wptr) { b = *chunk->chunk_wptr++; } else { b = 0; } bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDATA, b); } if (sc->sc_wchunk->chunk_wresid == 0) { sc->sc_wchunk = sc->sc_wchunk->chunk_next; } } static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc, size_t maxlen) { struct spi_chunk *chunk = sc->sc_rchunk; size_t len; uint8_t b; if (chunk == NULL) return; len = MIN(maxlen, chunk->chunk_rresid); chunk->chunk_rresid -= len; while (len--) { b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDATA); if (chunk->chunk_rptr) { *chunk->chunk_rptr++ = b; } } if (sc->sc_rchunk->chunk_rresid == 0) { sc->sc_rchunk = sc->sc_rchunk->chunk_next; } } static void sun4ispi_rxtx(struct sun4ispi_softc * const sc) { bool again; size_t rxavail, txavail; uint32_t fsr; /* service both FIFOs until no more progress can be made */ again = true; while (again) { again = false; fsr = SPIREG_READ(sc, SPI_FIFO_STA); rxavail = __SHIFTOUT(fsr, SPI_FIFO_STA_RF_CNT); txavail = 64 - __SHIFTOUT(fsr, SPI_FIFO_STA_TF_CNT); if (rxavail > 0) { KASSERT(sc->sc_rchunk != NULL); sun4ispi_rxfifo_drain(sc, rxavail); again = true; } if (txavail > 0 && sc->sc_wchunk != NULL) { sun4ispi_txfifo_fill(sc, txavail); again = true; } } } static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc) { uint32_t intctl; intctl = SPI_INTCTL_TX_INT_EN; intctl |= SPI_INTCTL_RF_OF_INT_EN; intctl |= SPI_INTCTL_TF_UR_INT_EN; if (sc->sc_rchunk) { if (sc->sc_rchunk->chunk_rresid >= 32) { intctl |= SPI_INTCTL_RF_HALF_FU_INT_EN; } else { intctl |= SPI_INTCTL_RF_RDY_INT_EN; } } if (sc->sc_wchunk) { intctl |= SPI_INTCTL_TF_HALF_EMP_INT_EN; } SPIREG_WRITE(sc, SPI_INTCTL, intctl); } static void sun4ispi_start(struct sun4ispi_softc * const sc) { struct spi_transfer *st; uint32_t ctl; struct spi_chunk *chunk; size_t burstcount; while ((st = spi_transq_first(&sc->sc_q)) != NULL) { spi_transq_dequeue(&sc->sc_q); KASSERT(sc->sc_transfer == NULL); sc->sc_transfer = st; sc->sc_rchunk = sc->sc_wchunk = st->st_chunks; sc->sc_running = true; burstcount = 0; for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) { burstcount += chunk->chunk_count; } KASSERT(burstcount <= SPI_BC_BC); SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_BC)); SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_WTC)); sun4ispi_rxtx(sc); sun4ispi_set_interrupt_mask(sc); KASSERT(st->st_slave < sc->sc_spi.sct_nslaves); ctl = sc->sc_CTL | __SHIFTIN(st->st_slave, SPI_CTL_SS) | SPI_CTL_XCH; SPIREG_WRITE(sc, SPI_CTL, ctl); if (!cold) return; for (;;) { (void) sun4ispi_intr(sc); if (ISSET(st->st_flags, SPI_F_DONE)) break; } } sc->sc_running = false; } static int sun4ispi_intr(void *cookie) { struct sun4ispi_softc * const sc = cookie; struct spi_transfer *st; uint32_t isr; isr = SPIREG_READ(sc, SPI_INT_STA); if (!isr) return 0; if (ISSET(isr, SPI_INT_STA_RO)) { device_printf(sc->sc_dev, "RXFIFO overflow\n"); } if (ISSET(isr, SPI_INT_STA_TU)) { device_printf(sc->sc_dev, "TXFIFO underrun\n"); } sun4ispi_rxtx(sc); if (ISSET(isr, SPI_INT_STA_TC)) { SPIREG_WRITE(sc, SPI_INTCTL, 0); KASSERT(sc->sc_rchunk == NULL); KASSERT(sc->sc_wchunk == NULL); st = sc->sc_transfer; sc->sc_transfer = NULL; KASSERT(st != NULL); spi_done(st, 0); sc->sc_running = false; } else { sun4ispi_set_interrupt_mask(sc); } SPIREG_WRITE(sc, SPI_INT_STA, isr); return 1; }