/* $NetBSD: if_scx.c,v 1.43 2023/06/15 07:21:45 nisimura Exp $ */ /*- * Copyright (c) 2020 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Tohru Nishimura. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #define NOT_MP_SAFE 0 /* * Socionext SC2A11 SynQuacer NetSec GbE driver * * Multiple Tx and Rx queues exist inside and dedicated descriptor * fields specifies which queue is to use. Three internal micro-processors * to handle incoming frames, outgoing frames and packet data crypto * processing. uP programs are stored in an external flash memory and * have to be loaded by device driver. * NetSec uses Synopsys DesignWare Core EMAC. DWC implementation * register (0x20) is known to have 0x10.36 and feature register (0x1058) * reports 0x11056f37. * <24> alternative/enhanced desc format * <18> receive IP type 2 checksum offload * <16> transmit checksum offload * <11> event counter (mac management counter, MMC) */ #include __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.43 2023/06/15 07:21:45 nisimura Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* SC2A11 GbE has 64-bit paddr descriptor */ struct tdes { uint32_t t0, t1, t2, t3; }; struct rdes { uint32_t r0, r1, r2, r3; }; #define T0_OWN (1U<<31) /* desc is ready to Tx */ #define T0_LD (1U<<30) /* last descriptor in array */ #define T0_DRID (24) /* 29:24 desc ring id */ #define T0_PT (1U<<21) /* 23:21 "pass-through" */ #define T0_TDRID (16) /* 20:16 target desc ring id: GMAC=15 */ #define T0_CC (1U<<15) /* ??? */ #define T0_FS (1U<<9) /* first segment of frame */ #define T0_LS (1U<<8) /* last segment of frame */ #define T0_CSUM (1U<<7) /* enable check sum offload */ #define T0_TSO (1U<<6) /* enable TCP segment offload */ #define T0_TRS (1U<<4) /* 5:4 "TRS" ??? */ /* T1 frame segment address 63:32 */ /* T2 frame segment address 31:0 */ /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */ #define R0_OWN (1U<<31) /* desc is empty */ #define R0_LD (1U<<30) /* last descriptor in array */ #define R0_SDRID (24) /* 29:24 source desc ring id */ #define R0_FR (1U<<23) /* found fragmented */ #define R0_ER (1U<<21) /* Rx error indication */ #define R0_ERR (3U<<16) /* 18:16 receive error code */ #define R0_TDRID (12) /* 15:12 target desc ring id */ #define R0_FS (1U<<9) /* first segment of frame */ #define R0_LS (1U<<8) /* last segment of frame */ #define R0_CSUM (3U<<6) /* 7:6 checksum status, 0: undone */ #define R0_CERR (2U<<6) /* 2: found bad */ #define R0_COK (1U<<6) /* 1: found ok */ /* R1 frame address 63:32 */ /* R2 frame address 31:0 */ /* R3 31:16 received frame length, 15:0 buffer length to receive */ /* * SC2A11 registers. 0x100 - 1204 */ #define SWRESET 0x104 #define SRST_RUN (1U<<31) /* instruct start, 0 to stop */ #define COMINIT 0x120 #define INIT_DB (1U<<2) /* ???; self clear when done */ #define INIT_CLS (1U<<1) /* ???; self clear when done */ #define xINTSR 0x200 /* aggregated interrupt status */ #define IRQ_UCODE (1U<<20) /* ucode load completed; W1C */ #define IRQ_MAC (1U<<19) /* ??? */ #define IRQ_PKT (1U<<18) /* ??? */ #define IRQ_BOOTCODE (1U<<5) /* ??? */ #define IRQ_XDONE (1U<<4) /* ??? mode change completed */ #define IRQ_RX (1U<<1) /* top level Rx interrupt */ #define IRQ_TX (1U<<0) /* top level Tx interrupt */ #define xINTAEN 0x204 /* INT_A enable */ #define xINTAE_SET 0x234 /* bit to set */ #define xINTAE_CLR 0x238 /* bit to clr */ #define xINTBEN 0x23c /* INT_B enable */ #define xINTBE_SET 0x240 /* bit to set */ #define xINTBE_CLR 0x244 /* bit to clr */ #define TXISR 0x400 /* transmit status; W1C */ #define TXIEN 0x404 /* tx interrupt enable */ #define TXIE_SET 0x428 /* bit to set */ #define TXIE_CLR 0x42c /* bit to clr */ #define TXI_NTOWNR (1U<<17) /* ??? desc array got empty */ #define TXI_TR_ERR (1U<<16) /* xmit error detected */ #define TXI_TXDONE (1U<<15) /* xmit completed */ #define TXI_TMREXP (1U<<14) /* coalesce guard timer expired */ #define RXISR 0x440 /* receive status; W1C */ #define RXIEN 0x444 /* rx interrupt enable */ #define RXIE_SET 0x468 /* bit to set */ #define RXIE_CLR 0x46c /* bit to clr */ #define RXI_RC_ERR (1U<<16) /* recv error detected */ #define RXI_PKTCNT (1U<<15) /* recv counter has new value */ #define RXI_TMREXP (1U<<14) /* coalesce guard timer expired */ #define TDBA_LO 0x408 /* tdes array base addr 31:0 */ #define TDBA_HI 0x434 /* tdes array base addr 63:32 */ #define RDBA_LO 0x448 /* rdes array base addr 31:0 */ #define RDBA_HI 0x474 /* rdes array base addr 63:32 */ #define TXCONF 0x430 /* tdes config */ #define RXCONF 0x470 /* rdes config */ #define DESCNF_UP (1U<<31) /* 'up-and-running' */ #define DESCNF_CHRST (1U<<30) /* channel reset */ #define DESCNF_TMR (1U<<4) /* coalesce timer unit select */ #define DESCNF_LE (1) /* little endian desc format */ #define TXSUBMIT 0x410 /* submit frame(s) to transmit */ #define TXCOALESC 0x418 /* tx intr coalesce upper bound */ #define RXCOALESC 0x458 /* rx intr coalesce upper bound */ #define TCLSCTIME 0x420 /* tintr guard time usec */ #define RCLSCTIME 0x460 /* rintr guard time usec */ #define TXDONECNT 0x414 /* tx completed count, auto-zero */ #define RXAVAILCNT 0x454 /* rx available count, auto-zero */ #define DMACTL_TMR 0x20c /* DMA cycle tick value */ #define PKTCTRL 0x140 /* pkt engine control */ #define MODENRM (1U<<28) /* set operational mode to 'normal' */ #define ENJUMBO (1U<<27) /* allow jumbo frame */ #define RPTCSUMERR (1U<<3) /* log Rx checksum error */ #define RPTHDCOMP (1U<<2) /* log header incomplete condition */ #define RPTHDERR (1U<<1) /* log header error */ #define DROPNOMATCH (1U<<0) /* drop no match frames */ #define UCODE_PKT 0x0d0 /* packet engine ucode port */ #define UCODE_H2M 0x210 /* host2media engine ucode port */ #define UCODE_M2H 0x21c /* media2host engine ucode port */ #define CORESTAT 0x218 /* engine run state */ #define PKTSTOP (1U<<2) /* pkt engine stopped */ #define M2HSTOP (1U<<1) /* M2H engine stopped */ #define H2MSTOP (1U<<0) /* H2M engine stopped */ #define DMACTL_H2M 0x214 /* host2media engine control */ #define DMACTL_M2H 0x220 /* media2host engine control */ #define DMACTL_STOP (1U<<0) /* instruct stop; self-clear */ #define M2H_MODE_TRANS (1U<<20) /* initiate M2H mode change */ #define MODE_TRANS 0x500 /* mode change completion status */ #define N2T_DONE (1U<<20) /* normal->taiki change completed */ #define T2N_DONE (1U<<19) /* taiki->normal change completed */ #define CLKEN 0x100 /* clock distribution enable */ #define CLK_G (1U<<5) /* feed clk domain G */ #define CLK_C (1U<<1) /* feed clk domain C */ #define CLK_D (1U<<0) /* feed clk domain D */ #define DESC_INIT 0x11fc /* write 1 for desc init, SC */ #define DESC_SRST 0x1204 /* write 1 for desc sw reset, SC */ /* GMAC register indirect access. thru MACCMD/MACDATA operation */ #define MACDATA 0x11c0 /* gmac register rd/wr data */ #define MACCMD 0x11c4 /* gmac register operation */ #define CMD_IOWR (1U<<28) /* write op */ #define CMD_BUSY (1U<<31) /* busy bit */ #define MACSTAT 0x1024 /* mac interrupt status (unused) */ #define MACINTE 0x1028 /* mac interrupt enable (unused) */ #define FLOWTHR 0x11cc /* flow control threshold */ /* 31:16 pause threshold, 15:0 resume threshold */ #define INTF_SEL 0x11d4 /* phy interface type */ #define INTF_GMII 0 #define INTF_RGMII 1 #define INTF_RMII 4 #define MCVER 0x22c /* micro controller version */ #define HWVER 0x230 /* hardware version */ /* * GMAC registers are mostly identical to Synopsys DesignWare Core * Ethernet. These must be handled by indirect access. */ #define GMACMCR 0x0000 /* MAC configuration */ #define MCR_IBN (1U<<30) /* watch in-band-signal */ #define MCR_CST (1U<<25) /* strip CRC */ #define MCR_TC (1U<<24) /* keep RGMII PHY notified */ #define MCR_WD (1U<<23) /* allow long >2048 tx frame */ #define MCR_JE (1U<<20) /* allow ~9018 tx jumbo frame */ #define MCR_IFG (7U<<17) /* 19:17 IFG value 0~7 */ #define MCR_DCRS (1U<<16) /* ignore (G)MII HDX Tx error */ #define MCR_PS (1U<<15) /* 1: MII 10/100, 0: GMII 1000 */ #define MCR_FES (1U<<14) /* force speed 100 */ #define MCR_DO (1U<<13) /* don't receive my own HDX Tx frames */ #define MCR_LOOP (1U<<12) /* run loop back */ #define MCR_USEFDX (1U<<11) /* force full duplex */ #define MCR_IPCEN (1U<<10) /* handle checksum */ #define MCR_DR (1U<<9) /* attempt no tx retry, send once */ #define MCR_LUD (1U<<8) /* link condition report when RGMII */ #define MCR_ACS (1U<<7) /* auto pad auto strip CRC */ #define MCR_DC (1U<<4) /* report excessive tx deferral */ #define MCR_TE (1U<<3) /* run Tx MAC engine, 0 to stop */ #define MCR_RE (1U<<2) /* run Rx MAC engine, 0 to stop */ #define MCR_PREA (3U) /* 1:0 preamble len. 0~2 */ #define GMACAFR 0x0004 /* frame DA/SA address filter */ #define AFR_RA (1U<<31) /* accept all irrespective of filt. */ #define AFR_HPF (1U<<10) /* hash+perfect filter, or hash only */ #define AFR_SAF (1U<<9) /* source address filter */ #define AFR_SAIF (1U<<8) /* SA inverse filtering */ #define AFR_PCF (2U<<6) /* 7:6 accept pause frame 0~3 */ #define AFR_DBF (1U<<5) /* reject broadcast frame */ #define AFR_PM (1U<<4) /* accept all multicast frame */ #define AFR_DAIF (1U<<3) /* DA inverse filtering */ #define AFR_MHTE (1U<<2) /* use multicast hash table */ #define AFR_UHTE (1U<<1) /* use hash table for unicast */ #define AFR_PR (1U<<0) /* run promisc mode */ #define GMACGAR 0x0010 /* MDIO operation */ #define GAR_PHY (11) /* 15:11 mii phy */ #define GAR_REG (6) /* 10:6 mii reg */ #define GAR_CLK (2) /* 5:2 mdio clock tick ratio */ #define GAR_IOWR (1U<<1) /* MDIO write op */ #define GAR_BUSY (1U<<0) /* busy bit */ #define GAR_MDIO_25_35MHZ 2 #define GAR_MDIO_35_60MHZ 3 #define GAR_MDIO_60_100MHZ 0 #define GAR_MDIO_100_150MHZ 1 #define GAR_MDIO_150_250MHZ 4 #define GAR_MDIO_250_300MHZ 5 #define GMACGDR 0x0014 /* MDIO rd/wr data */ #define GMACFCR 0x0018 /* 802.3x flowcontrol */ /* 31:16 pause timer value, 5:4 pause timer threshold */ #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */ #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */ #define GMACIMPL 0x0020 /* implementation id */ #define GMACISR 0x0038 /* interrupt status indication */ #define GMACIMR 0x003c /* interrupt mask to inhibit */ #define ISR_TS (1U<<9) /* time stamp operation detected */ #define ISR_CO (1U<<7) /* Rx checksum offload completed */ #define ISR_TX (1U<<6) /* Tx completed */ #define ISR_RX (1U<<5) /* Rx completed */ #define ISR_ANY (1U<<4) /* any of above 5-7 report */ #define ISR_LC (1U<<0) /* link status change detected */ #define GMACMAH0 0x0040 /* my own MAC address 47:32 */ #define GMACMAL0 0x0044 /* my own MAC address 31:0 */ #define GMACMAH(i) ((i)*8+0x40) /* supplemental MAC addr 1-15 */ #define GMACMAL(i) ((i)*8+0x44) /* 31:0 MAC address low part */ /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */ #define GMACAMAH(i) ((i)*8+0x800) /* supplemental MAC addr 16-31 */ #define GMACAMAL(i) ((i)*8+0x804) /* 31: MAC address low part */ /* supplimental MAH bit-31: slot in use, no other bit is effective */ #define GMACMHTH 0x0008 /* 64bit multicast hash table 63:32 */ #define GMACMHTL 0x000c /* 64bit multicast hash table 31:0 */ #define GMACMHT(i) ((i)*4+0x500) /* 256-bit alternative mcast hash 0-7 */ #define GMACVTAG 0x001c /* VLAN tag control */ #define VTAG_HASH (1U<<19) /* use VLAN tag hash table */ #define VTAG_SVLAN (1U<<18) /* handle type 0x88A8 SVLAN frame */ #define VTAG_INV (1U<<17) /* run inverse match logic */ #define VTAG_ETV (1U<<16) /* use only 12bit VID field to match */ /* 15:0 concat of PRIO+CFI+VID */ #define GMACVHT 0x0588 /* 16-bit VLAN tag hash */ #define GMACMIISR 0x00d8 /* resolved RGMII/SGMII link status */ #define MIISR_LUP (1U<<3) /* link up(1)/down(0) report */ #define MIISR_SPD (3U<<1) /* 2:1 speed 10(0)/100(1)/1000(2) */ #define MIISR_FDX (1U<<0) /* fdx detected */ #define GMACLPIS 0x0030 /* LPI control & status */ #define LPIS_TXA (1U<<19) /* complete Tx in progress and LPI */ #define LPIS_PLS (1U<<17) #define LPIS_EN (1U<<16) /* 1: enter LPI mode, 0: exit */ #define LPIS_TEN (1U<<0) /* Tx LPI report */ #define GMACLPIC 0x0034 /* LPI timer control */ #define LPIC_LST (5) /* 16:5 ??? */ #define LPIC_TWT (0) /* 15:0 ??? */ /* 0x700-764 Time Stamp control */ #define GMACBMR 0x1000 /* DMA bus mode control */ /* 24 8xPBL multiply by 8 for RPBL & PBL values * 23 USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx * 22:17 RPBL * 16 FB fixed burst * 15:14 priority between Rx and Tx * 3 rxtx ratio 41 * 2 rxtx ratio 31 * 1 rxtx ratio 21 * 0 rxtx ratio 11 * 13:8 PBL possible DMA burst length * 7 ATDS select 32-byte descriptor format for advanced features * 6:2 DSL descriptor skip length, 0 for adjuscent, counted on bus width * 0 MAC reset op. self-clear */ #define BMR_RST (1) /* reset op. self clear when done */ #define GMACTPD 0x1004 /* write any to resume tdes */ #define GMACRPD 0x1008 /* write any to resume rdes */ #define GMACRDLA 0x100c /* rdes base address 32bit paddr */ #define GMACTDLA 0x1010 /* tdes base address 32bit paddr */ #define GMACDSR 0x1014 /* DMA status detail report; W1C */ #define GMACDIE 0x101c /* DMA interrupt enable */ #define DMAI_LPI (1U<<30) /* LPI interrupt */ #define DMAI_TTI (1U<<29) /* timestamp trigger interrupt */ #define DMAI_GMI (1U<<27) /* management counter interrupt */ #define DMAI_GLI (1U<<26) /* xMII link change detected */ #define DMAI_EB (23) /* 25:23 DMA bus error detected */ #define DMAI_TS (20) /* 22:20 Tx DMA state report */ #define DMAI_RS (17) /* 29:17 Rx DMA state report */ #define DMAI_NIS (1U<<16) /* normal interrupt summary; W1C */ #define DMAI_AIS (1U<<15) /* abnormal interrupt summary; W1C */ #define DMAI_ERI (1U<<14) /* the first Rx buffer is filled */ #define DMAI_FBI (1U<<13) /* DMA bus error detected */ #define DMAI_ETI (1U<<10) /* single frame Tx completed */ #define DMAI_RWT (1U<<9) /* longer than 2048 frame received */ #define DMAI_RPS (1U<<8) /* Rx process is now stopped */ #define DMAI_RU (1U<<7) /* Rx descriptor not available */ #define DMAI_RI (1U<<6) /* frame Rx completed by !R1_DIC */ #define DMAI_UNF (1U<<5) /* Tx underflow detected */ #define DMAI_OVF (1U<<4) /* receive buffer overflow detected */ #define DMAI_TJT (1U<<3) /* longer than 2048 frame sent */ #define DMAI_TU (1U<<2) /* Tx descriptor not available */ #define DMAI_TPS (1U<<1) /* transmission is stopped */ #define DMAI_TI (1U<<0) /* frame Tx completed by T0_IC */ #define GMACOMR 0x1018 /* DMA operation mode */ #define OMR_DT (1U<<26) /* don't drop error frames */ #define OMR_RSF (1U<<25) /* 1: Rx store&forward, 0: immed. */ #define OMR_DFF (1U<<24) /* don't flush rx frames on shortage */ #define OMR_TSF (1U<<21) /* 1: Tx store&forward, 0: immed. */ #define OMR_FTF (1U<<20) /* initiate tx FIFO reset, SC */ #define OMR_TTC (14) /* 16:14 Tx threshold */ #define OMR_ST (1U<<13) /* run Tx DMA engine, 0 to stop */ #define OMR_RFD (11) /* 12:11 Rx FIFO fill level */ #define OMR_EFC (1U<<8) /* transmit PAUSE to throttle Rx lvl. */ #define OMR_FEF (1U<<7) /* allow to receive error frames */ #define OMR_SR (1U<<1) /* run Rx DMA engine, 0 to stop */ #define GMACEVCS 0x1020 /* missed frame or ovf detected */ #define GMACRWDT 0x1024 /* enable rx watchdog timer interrupt */ #define GMACAXIB 0x1028 /* AXI bus mode control */ #define GMACAXIS 0x102c /* AXI status report */ /* 0x1048 current tx desc address */ /* 0x104c current rx desc address */ /* 0x1050 current tx buffer address */ /* 0x1054 current rx buffer address */ #define HWFEA 0x1058 /* DWC feature report */ #define FEA_EXDESC (1U<<24) /* alternative/enhanced desc layout */ #define FEA_2COE (1U<<18) /* Rx type 2 IP checksum offload */ #define FEA_1COE (1U<<17) /* Rx type 1 IP checksum offload */ #define FEA_TXOE (1U<<16) /* Tx checksum offload */ #define FEA_MMC (1U<<11) /* RMON event counter */ #define GMACEVCTL 0x0100 /* event counter control */ #define EVC_FHP (1U<<5) /* full-half preset */ #define EVC_CP (1U<<4) /* counter preset */ #define EVC_MCF (1U<<3) /* counter freeze */ #define EVC_ROR (1U<<2) /* auto-zero on counter read */ #define EVC_CSR (1U<<1) /* counter stop rollover */ #define EVC_CR (1U<<0) /* reset counters */ #define GMACEVCNT(i) ((i)*4+0x114) /* 80 event counters 0x114 - 0x284 */ /* 0x400-4ac L3/L4 control */ /* * flash memory layout * 0x00 - 07 48-bit MAC station address. 4 byte wise in BE order. * 0x08 - 0b H->MAC xfer engine program start addr 63:32. * 0x0c - 0f H2M program addr 31:0 (these are absolute addr, not offset) * 0x10 - 13 H2M program length in 4 byte count. * 0x14 - 0b M->HOST xfer engine program start addr 63:32. * 0x18 - 0f M2H program addr 31:0 (absolute addr, not relative) * 0x1c - 13 M2H program length in 4 byte count. * 0x20 - 23 packet engine program addr 31:0, (absolute addr, not offset) * 0x24 - 27 packet program length in 4 byte count. * * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0. */ #define _BMR 0x00412080 /* NetSec BMR value, magic spell */ /* NetSec uses local RAM to handle GMAC desc arrays */ #define _RDLA 0x18000 #define _TDLA 0x1c000 /* lower address region is used for intermediate frame data buffers */ /* * all below are software construction. */ #define MD_NTXDESC 128 #define MD_NRXDESC 64 #define MD_NTXSEGS 16 #define MD_TXQUEUELEN 8 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1) #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4) #define MD_NTXDESC_MASK (MD_NTXDESC - 1) #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK) #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK) #define MD_NRXDESC_MASK (MD_NRXDESC - 1) #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK) struct control_data { struct tdes cd_txdescs[MD_NTXDESC]; struct rdes cd_rxdescs[MD_NRXDESC]; }; #define SCX_CDOFF(x) offsetof(struct control_data, x) #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)]) #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)]) struct scx_txsoft { struct mbuf *txs_mbuf; /* head of our mbuf chain */ bus_dmamap_t txs_dmamap; /* our DMA map */ int txs_firstdesc; /* first descriptor in packet */ int txs_lastdesc; /* last descriptor in packet */ int txs_ndesc; /* # of descriptors used */ }; struct scx_rxsoft { struct mbuf *rxs_mbuf; /* head of our mbuf chain */ bus_dmamap_t rxs_dmamap; /* our DMA map */ }; struct scx_softc { device_t sc_dev; /* generic device information */ bus_space_tag_t sc_st; /* bus space tag */ bus_space_handle_t sc_sh; /* bus space handle */ bus_size_t sc_sz; /* csr map size */ bus_space_handle_t sc_eesh; /* eeprom section handle */ bus_size_t sc_eesz; /* eeprom map size */ bus_dma_tag_t sc_dmat; /* bus DMA tag */ struct ethercom sc_ethercom; /* Ethernet common data */ struct mii_data sc_mii; /* MII */ callout_t sc_callout; /* PHY monitor callout */ bus_dma_segment_t sc_seg; /* descriptor store seg */ int sc_nseg; /* descriptor store nseg */ void *sc_ih; /* interrupt cookie */ int sc_phy_id; /* PHY address */ int sc_flowflags; /* 802.3x PAUSE flow control */ uint32_t sc_mdclk; /* GAR 5:2 clock selection */ uint32_t sc_t0cotso; /* T0_CSUM | T0_TSO to run */ int sc_miigmii; /* 1: MII/GMII, 0: RGMII */ int sc_phandle; /* fdt phandle */ uint64_t sc_freq; uint32_t sc_maxsize; bus_dmamap_t sc_cddmamap; /* control data DMA map */ #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr struct control_data *sc_control_data; #define sc_txdescs sc_control_data->cd_txdescs #define sc_rxdescs sc_control_data->cd_rxdescs struct scx_txsoft sc_txsoft[MD_TXQUEUELEN]; struct scx_rxsoft sc_rxsoft[MD_NRXDESC]; int sc_txfree; /* number of free Tx descriptors */ int sc_txnext; /* next ready Tx descriptor */ int sc_txsfree; /* number of free Tx jobs */ int sc_txsnext; /* next ready Tx job */ int sc_txsdirty; /* dirty Tx jobs */ int sc_rxptr; /* next ready Rx descriptor/descsoft */ krndsource_t rnd_source; /* random source */ #ifdef GMAC_EVENT_COUNTERS /* 80 event counters exist */ #endif }; #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x))) #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x))) #define SCX_CDTXSYNC(sc, x, n, ops) \ do { \ int __x, __n; \ \ __x = (x); \ __n = (n); \ \ /* If it will wrap around, sync to the end of the ring. */ \ if ((__x + __n) > MD_NTXDESC) { \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ SCX_CDTXOFF(__x), sizeof(struct tdes) * \ (MD_NTXDESC - __x), (ops)); \ __n -= (MD_NTXDESC - __x); \ __x = 0; \ } \ \ /* Now sync whatever is left. */ \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \ } while (/*CONSTCOND*/0) #define SCX_CDRXSYNC(sc, x, ops) \ do { \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \ } while (/*CONSTCOND*/0) #define SCX_INIT_RXDESC(sc, x) \ do { \ struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \ struct mbuf *__m = __rxs->rxs_mbuf; \ bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \ bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len; \ __m->m_data = __m->m_ext.ext_buf; \ __rxd->r3 = htole32(__z - 4); \ __rxd->r2 = htole32(BUS_ADDR_LO32(__p)); \ __rxd->r1 = htole32(BUS_ADDR_HI32(__p)); \ __rxd->r0 &= htole32(R0_LD); \ __rxd->r0 |= htole32(R0_OWN); \ } while (/*CONSTCOND*/0) /* memory mapped CSR register access */ #define CSR_READ(sc,off) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off)) #define CSR_WRITE(sc,off,val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val)) /* flash memory access */ #define EE_READ(sc,off) \ bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off)) static int scx_fdt_match(device_t, cfdata_t, void *); static void scx_fdt_attach(device_t, device_t, void *); static int scx_acpi_match(device_t, cfdata_t, void *); static void scx_acpi_attach(device_t, device_t, void *); CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc), scx_fdt_match, scx_fdt_attach, NULL, NULL); CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc), scx_acpi_match, scx_acpi_attach, NULL, NULL); static void scx_attach_i(struct scx_softc *); static void scx_reset(struct scx_softc *); static void scx_stop(struct ifnet *, int); static int scx_init(struct ifnet *); static int scx_ioctl(struct ifnet *, u_long, void *); static void scx_set_rcvfilt(struct scx_softc *); static void scx_start(struct ifnet *); static void scx_watchdog(struct ifnet *); static int scx_intr(void *); static void txreap(struct scx_softc *); static void rxfill(struct scx_softc *); static int add_rxbuf(struct scx_softc *, int); static void rxdrain(struct scx_softc *sc); static void mii_statchg(struct ifnet *); static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int mii_readreg(device_t, int, int, uint16_t *); static int mii_writereg(device_t, int, int, uint16_t); static void phy_tick(void *); static void dump_hwfeature(struct scx_softc *); static void resetuengine(struct scx_softc *); static void loaducode(struct scx_softc *); static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t); static void forcephyloopback(struct scx_softc *); static void resetphytonormal(struct scx_softc *); static int get_mdioclk(uint32_t); #define WAIT_FOR_SET(sc, reg, set) \ wait_for_bits(sc, reg, set, ~0, 0) #define WAIT_FOR_CLR(sc, reg, clr) \ wait_for_bits(sc, reg, 0, clr, 0) static int wait_for_bits(struct scx_softc *sc, int reg, uint32_t set, uint32_t clr, uint32_t fail) { uint32_t val; int ntries; for (ntries = 0; ntries < 1000; ntries++) { val = CSR_READ(sc, reg); if ((val & set) || !(val & clr)) return 0; if (val & fail) return 1; DELAY(1); } return 1; } /* GMAC register indirect access */ static int mac_read(struct scx_softc *sc, int reg) { CSR_WRITE(sc, MACCMD, reg | CMD_BUSY); (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY); return CSR_READ(sc, MACDATA); } static void mac_write(struct scx_softc *sc, int reg, int val) { CSR_WRITE(sc, MACDATA, val); CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY); (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY); } /* dig and decode "clock-frequency" value for a given clkname */ static int get_clk_freq(int phandle, const char *clkname) { u_int index, n, cells; const u_int *p; int err, len, resid; unsigned int freq = 0; err = fdtbus_get_index(phandle, "clock-names", clkname, &index); if (err == -1) return -1; p = fdtbus_get_prop(phandle, "clocks", &len); if (p == NULL) return -1; for (n = 0, resid = len; resid > 0; n++) { const int cc_phandle = fdtbus_get_phandle_from_native(be32toh(p[0])); if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells)) return -1; if (n == index) { if (of_getprop_uint32(cc_phandle, "clock-frequency", &freq)) return -1; return freq; } resid -= (cells + 1) * 4; p += (cells + 1) * 4; } return -1; } #define ATTACH_DEBUG 1 static const struct device_compatible_entry compat_data[] = { { .compat = "socionext,synquacer-netsec" }, DEVICE_COMPAT_EOL }; static const struct device_compatible_entry compatible[] = { { .compat = "SCX0001" }, DEVICE_COMPAT_EOL }; static int scx_fdt_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_compatible_match(faa->faa_phandle, compat_data); } static void scx_fdt_attach(device_t parent, device_t self, void *aux) { struct scx_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; bus_space_handle_t bsh; bus_space_handle_t eebsh; bus_addr_t addr[2]; bus_size_t size[2]; void *intrh; char intrstr[128]; int phy_phandle; const char *phy_mode; bus_addr_t phy_id; long ref_clk; if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) { aprint_error(": unable to map registers\n"); return; } if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) { aprint_error(": unable to map device eeprom\n"); goto fail; } if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { aprint_error(": failed to decode interrupt\n"); goto fail; } phy_mode = fdtbus_get_string(phandle, "phy-mode"); if (phy_mode == NULL) aprint_error(": missing 'phy-mode' property\n"); phy_phandle = fdtbus_get_phandle(phandle, "phy-handle"); if (phy_phandle == -1 || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0) phy_id = MII_PHY_ANY; ref_clk = get_clk_freq(phandle, "phy_ref_clk"); if (ref_clk == -1) ref_clk = 250 * 1000 * 1000; #if ATTACH_DEBUG == 1 aprint_normal("\n"); aprint_normal_dev(self, "[FDT] phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)phy_id, ref_clk); aprint_normal("%s", device_xname(self)); #endif intrh = fdtbus_intr_establish(phandle, 0, IPL_NET, NOT_MP_SAFE, scx_intr, sc); if (intrh == NULL) { aprint_error(": couldn't establish interrupt\n"); goto fail; } aprint_normal(" interrupt on %s", intrstr); sc->sc_dev = self; sc->sc_st = faa->faa_bst; sc->sc_sh = bsh; sc->sc_sz = size[0]; sc->sc_eesh = eebsh; sc->sc_eesz = size[1]; sc->sc_ih = intrh; sc->sc_dmat = faa->faa_dmat; sc->sc_phandle = phandle; sc->sc_phy_id = phy_id; sc->sc_freq = ref_clk; scx_attach_i(sc); return; fail: if (sc->sc_eesz) bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz); if (sc->sc_sz) bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); return; } static int scx_acpi_match(device_t parent, cfdata_t cf, void *aux) { struct acpi_attach_args *aa = aux; return acpi_compatible_match(aa, compatible); } #define HWFEA_DEBUG 1 static void scx_acpi_attach(device_t parent, device_t self, void *aux) { struct scx_softc * const sc = device_private(self); struct acpi_attach_args * const aa = aux; ACPI_HANDLE handle = aa->aa_node->ad_handle; bus_space_handle_t bsh, eebsh; struct acpi_resources res; struct acpi_mem *mem, *mem1; struct acpi_irq *irq; ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq; ACPI_STATUS rv; void *intrh; rv = acpi_resource_parse(self, handle, "_CRS", &res, &acpi_resource_parse_ops_default); if (ACPI_FAILURE(rv)) return; mem = acpi_res_mem(&res, 0); irq = acpi_res_irq(&res, 0); if (mem == NULL || irq == NULL || mem->ar_length == 0) { aprint_error(": incomplete crs resources\n"); goto done; } if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0, &bsh) != 0) { aprint_error(": unable to map registers\n"); goto done; } mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */ if (mem1 == NULL || mem1->ar_length == 0) { aprint_error(": incomplete eeprom resources\n"); goto fail_0; } if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0, &eebsh)) { aprint_error(": unable to map device eeprom\n"); goto fail_0; } rv = acpi_dsd_integer(handle, "max-speed", &max_spd); if (ACPI_FAILURE(rv)) max_spd = 1000; rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame); if (ACPI_FAILURE(rv)) max_frame = 2048; rv = acpi_dsd_integer(handle, "phy-channel", &phy_id); if (ACPI_FAILURE(rv)) phy_id = MII_PHY_ANY; rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency", &phy_freq); if (ACPI_FAILURE(rv)) phy_freq = 250 * 1000 * 1000; #if ATTACH_DEBUG == 1 aprint_normal_dev(self, "[ACPI] max-speed %d, phy id %d, freq %ld\n", (int)max_spd, (int)phy_id, phy_freq); aprint_normal("%s", device_xname(self)); #endif intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle, IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self)); if (intrh == NULL) { aprint_error(": couldn't establish interrupt\n"); goto fail_1; } sc->sc_dev = self; sc->sc_st = aa->aa_memt; sc->sc_sh = bsh; sc->sc_sz = mem->ar_length; sc->sc_eesh = eebsh; sc->sc_eesz = mem1->ar_length; sc->sc_ih = intrh; sc->sc_dmat = BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat; sc->sc_phy_id = (int)phy_id; sc->sc_freq = phy_freq; sc->sc_maxsize = max_frame; scx_attach_i(sc); done: acpi_resource_cleanup(&res); return; fail_1: bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz); fail_0: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); acpi_resource_cleanup(&res); return; } static void scx_attach_i(struct scx_softc *sc) { struct ifnet * const ifp = &sc->sc_ethercom.ec_if; struct mii_data * const mii = &sc->sc_mii; struct ifmedia * const ifm = &mii->mii_media; uint32_t which, dwimp, dwfea; uint8_t enaddr[ETHER_ADDR_LEN]; bus_dma_segment_t seg; paddr_t p, q; uint32_t csr; int i, nseg, error = 0; which = CSR_READ(sc, HWVER); /* Socionext version 5.xx */ dwimp = mac_read(sc, GMACIMPL); /* DWC implementation XX.YY */ dwfea = mac_read(sc, HWFEA); /* DWC feature bits */ aprint_naive("\n"); aprint_normal(": Socionext NetSec Gigabit Ethernet controller " "%x.%x\n", which >> 16, which & 0xffff); aprint_normal_dev(sc->sc_dev, "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n", dwimp & 0xff, dwimp >> 8, dwfea); dump_hwfeature(sc); /* detected PHY type */ sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0); /* fetch MAC address in flash 0:7, stored in big endian order */ csr = EE_READ(sc, 0x00); enaddr[0] = csr >> 24; enaddr[1] = csr >> 16; enaddr[2] = csr >> 8; enaddr[3] = csr; csr = EE_READ(sc, 0x04); enaddr[4] = csr >> 24; enaddr[5] = csr >> 16; aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(enaddr)); sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */ mii->mii_ifp = ifp; mii->mii_readreg = mii_readreg; mii->mii_writereg = mii_writereg; mii->mii_statchg = mii_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts); mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(ifm, IFM_ETHER | IFM_NONE); } else ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */ /* * Allocate the control data structures, and create and load the * DMA map for it. */ error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0); if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error); goto fail_0; } error = bus_dmamem_map(sc->sc_dmat, &seg, nseg, sizeof(struct control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT); if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error); goto fail_1; } error = bus_dmamap_create(sc->sc_dmat, sizeof(struct control_data), 1, sizeof(struct control_data), 0, 0, &sc->sc_cddmamap); if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, " "error = %d\n", error); goto fail_2; } error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct control_data), NULL, 0); if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n", error); goto fail_3; } for (i = 0; i < MD_TXQUEUELEN; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, MD_NTXSEGS, MCLBYTES, 0, 0, &sc->sc_txsoft[i].txs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, error = %d\n", i, error); goto fail_4; } } for (i = 0; i < MD_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, error = %d\n", i, error); goto fail_5; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } sc->sc_seg = seg; sc->sc_nseg = nseg; #if 0 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg); #endif strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = scx_ioctl; ifp->if_start = scx_start; ifp->if_watchdog = scx_watchdog; ifp->if_init = scx_init; ifp->if_stop = scx_stop; IFQ_SET_READY(&ifp->if_snd); /* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; /* sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; not yet */ sc->sc_flowflags = 0; /* track PAUSE flow caps */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, enaddr); callout_init(&sc->sc_callout, 0); callout_setfunc(&sc->sc_callout, phy_tick, sc); rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); resetuengine(sc); loaducode(sc); /* feed NetSec descriptor array base addresses and timer value */ p = SCX_CDTXADDR(sc, 0); /* tdes array (ring#0) */ q = SCX_CDRXADDR(sc, 0); /* rdes array (ring#1) */ CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(p)); CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(p)); CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(q)); CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(q)); CSR_WRITE(sc, TXCONF, DESCNF_LE); /* little endian */ CSR_WRITE(sc, RXCONF, DESCNF_LE); /* little endian */ CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1); forcephyloopback(sc);/* make PHY loopback mode for uengine init */ CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* pre-cautional W1C */ CSR_WRITE(sc, CORESTAT, 0); /* start uengine to reprogram */ error = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE); if (error) { aprint_error_dev(sc->sc_dev, "uengine start failed\n"); } CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* W1C load complete report */ resetphytonormal(sc); /* take back PHY to normal mode */ CSR_WRITE(sc, DMACTL_M2H, M2H_MODE_TRANS); CSR_WRITE(sc, PKTCTRL, MODENRM); /* change to use normal mode */ error = WAIT_FOR_SET(sc, MODE_TRANS, T2N_DONE); if (error) { aprint_error_dev(sc->sc_dev, "uengine mode change failed\n"); } CSR_WRITE(sc, TXISR, ~0); /* clear pending emtpry/error irq */ CSR_WRITE(sc, xINTAE_CLR, ~0); /* disable tx / rx interrupts */ return; fail_5: for (i = 0; i < MD_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); } fail_4: for (i = 0; i < MD_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct control_data)); fail_1: bus_dmamem_free(sc->sc_dmat, &seg, nseg); fail_0: if (sc->sc_phandle) fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih); else acpi_intr_disestablish(sc->sc_ih); bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); return; } static void scx_reset(struct scx_softc *sc) { int loop = 0, busy; mac_write(sc, GMACOMR, 0); mac_write(sc, GMACBMR, BMR_RST); do { DELAY(1); busy = mac_read(sc, GMACBMR) & BMR_RST; } while (++loop < 3000 && busy); mac_write(sc, GMACBMR, _BMR); mac_write(sc, GMACAFR, 0); } static void scx_stop(struct ifnet *ifp, int disable) { struct scx_softc *sc = ifp->if_softc; uint32_t csr; /* Stop the one second clock. */ callout_stop(&sc->sc_callout); /* Down the MII. */ mii_down(&sc->sc_mii); /* Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~IFF_RUNNING; ifp->if_timer = 0; CSR_WRITE(sc, RXIE_CLR, ~0); CSR_WRITE(sc, TXIE_CLR, ~0); CSR_WRITE(sc, xINTAE_CLR, ~0); CSR_WRITE(sc, TXISR, ~0); CSR_WRITE(sc, RXISR, ~0); csr = mac_read(sc, GMACOMR); mac_write(sc, GMACOMR, csr &~ (OMR_SR | OMR_ST)); } static int scx_init(struct ifnet *ifp) { struct scx_softc *sc = ifp->if_softc; const uint8_t *ea = CLLADDR(ifp->if_sadl); uint32_t csr; int i, error; /* Cancel pending I/O. */ scx_stop(ifp, 0); /* Reset the chip to a known state. */ scx_reset(sc); /* build sane Tx */ memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC); sc->sc_txdescs[MD_NTXDESC - 1].t0 = htole32(T0_LD); /* tie off */ SCX_CDTXSYNC(sc, 0, MD_NTXDESC, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_txfree = MD_NTXDESC; sc->sc_txnext = 0; for (i = 0; i < MD_TXQUEUELEN; i++) sc->sc_txsoft[i].txs_mbuf = NULL; sc->sc_txsfree = MD_TXQUEUELEN; sc->sc_txsnext = 0; sc->sc_txsdirty = 0; /* load Rx descriptors with fresh mbuf */ for (i = 0; i < MD_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_mbuf == NULL) { if ((error = add_rxbuf(sc, i)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate or map rx " "buffer %d, error = %d\n", i, error); rxdrain(sc); goto out; } } else SCX_INIT_RXDESC(sc, i); } sc->sc_rxdescs[MD_NRXDESC - 1].r0 = htole32(R0_LD); /* tie off */ sc->sc_rxptr = 0; /* set my address in perfect match slot 0. little endian order */ csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0]; mac_write(sc, GMACMAL0, csr); csr = (ea[5] << 8) | ea[4]; mac_write(sc, GMACMAH0, csr); /* accept multicast frame or run promisc mode */ scx_set_rcvfilt(sc); /* set current media */ if ((error = ether_mediachange(ifp)) != 0) goto out; CSR_WRITE(sc, DESC_SRST, 01); WAIT_FOR_CLR(sc, DESC_SRST, 01); CSR_WRITE(sc, DESC_INIT, 01); WAIT_FOR_CLR(sc, DESC_INIT, 01); /* feed local memory descriptor array base addresses */ mac_write(sc, GMACRDLA, _RDLA); /* GMAC rdes store */ mac_write(sc, GMACTDLA, _TDLA); /* GMAC tdes store */ CSR_WRITE(sc, FLOWTHR, (48<<16) | 36); /* pause|resume threshold */ mac_write(sc, GMACFCR, 256 << 16); /* 31:16 pause value */ CSR_WRITE(sc, INTF_SEL, sc->sc_miigmii ? INTF_GMII : INTF_RGMII); CSR_WRITE(sc, RXCOALESC, 8); /* Rx coalesce bound */ CSR_WRITE(sc, TXCOALESC, 8); /* Tx coalesce bound */ CSR_WRITE(sc, RCLSCTIME, 500); /* Rx co. guard time usec */ CSR_WRITE(sc, TCLSCTIME, 500); /* Tx co. guard time usec */ CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP); CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP); CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX); #if 1 /* clear event counters, auto-zero after every read */ mac_write(sc, GMACEVCTL, EVC_CR | EVC_ROR); #endif /* kick to start GMAC engine */ csr = mac_read(sc, GMACOMR); mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST); ifp->if_flags |= IFF_RUNNING; /* start one second timer */ callout_schedule(&sc->sc_callout, hz); out: return error; } static int scx_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct scx_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifmedia *ifm = &sc->sc_mii.mii_media; int s, error; s = splnet(); switch (cmd) { case SIOCSIFMEDIA: /* Flow control requires full-duplex mode. */ if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || (ifr->ifr_media & IFM_FDX) == 0) ifr->ifr_media &= ~IFM_ETH_FMASK; if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { /* We can do both TXPAUSE and RXPAUSE. */ ifr->ifr_media |= IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; } sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; } error = ifmedia_ioctl(ifp, ifr, ifm, cmd); break; default: error = ether_ioctl(ifp, cmd, data); if (error != ENETRESET) break; error = 0; if (cmd == SIOCSIFCAP) error = if_init(ifp); if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed; set the hardware filter * accordingly. */ scx_set_rcvfilt(sc); } break; } splx(s); return error; } static uint32_t bit_reverse_32(uint32_t x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return (x >> 16) | (x << 16); } #define MCAST_DEBUG 0 static void scx_set_rcvfilt(struct scx_softc *sc) { struct ethercom * const ec = &sc->sc_ethercom; struct ifnet * const ifp = &ec->ec_if; struct ether_multistep step; struct ether_multi *enm; uint32_t mchash[2]; /* 2x 32 = 64 bit */ uint32_t csr, crc; int i; csr = mac_read(sc, GMACAFR); csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF); mac_write(sc, GMACAFR, csr); /* clear 15 entry supplemental perfect match filter */ for (i = 1; i < 16; i++) mac_write(sc, GMACMAH(i), 0); /* build 64 bit multicast hash filter */ crc = mchash[1] = mchash[0] = 0; ETHER_LOCK(ec); if (ifp->if_flags & IFF_PROMISC) { ec->ec_flags |= ETHER_F_ALLMULTI; ETHER_UNLOCK(ec); /* run promisc. mode */ csr |= AFR_PR; goto update; } ec->ec_flags &= ~ETHER_F_ALLMULTI; ETHER_FIRST_MULTI(step, ec, enm); i = 1; /* slot 0 is occupied */ while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ec->ec_flags |= ETHER_F_ALLMULTI; ETHER_UNLOCK(ec); /* accept all multi */ csr |= AFR_PM; goto update; } #if MCAST_DEBUG == 1 aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo)); #endif if (i < 16) { /* use 15 entry perfect match filter */ uint32_t addr; uint8_t *ep = enm->enm_addrlo; addr = (ep[3] << 24) | (ep[2] << 16) | (ep[1] << 8) | ep[0]; mac_write(sc, GMACMAL(i), addr); addr = (ep[5] << 8) | ep[4]; mac_write(sc, GMACMAH(i), addr | 1U<<31); } else { /* use hash table when too many */ crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); crc = bit_reverse_32(~crc); /* 1(31) 5(30:26) bit sampling */ mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); } ETHER_NEXT_MULTI(step, enm); i++; } ETHER_UNLOCK(ec); if (crc) csr |= AFR_MHTE; /* use mchash[] */ csr |= AFR_HPF; /* use perfect match as well */ update: mac_write(sc, GMACMHTH, mchash[1]); mac_write(sc, GMACMHTL, mchash[0]); mac_write(sc, GMACAFR, csr); return; } static void scx_start(struct ifnet *ifp) { struct scx_softc *sc = ifp->if_softc; struct mbuf *m0; struct scx_txsoft *txs; bus_dmamap_t dmamap; int error, nexttx, lasttx, ofree, seg; uint32_t tdes0; if ((ifp->if_flags & IFF_RUNNING) == 0) return; /* Remember the previous number of free descriptors. */ ofree = sc->sc_txfree; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->sc_txsfree < MD_TXQUEUE_GC) { txreap(sc); if (sc->sc_txsfree == 0) break; } txs = &sc->sc_txsoft[sc->sc_txsnext]; dmamap = txs->txs_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { if (error == EFBIG) { aprint_error_dev(sc->sc_dev, "Tx packet consumes too many " "DMA segments, dropping...\n"); IFQ_DEQUEUE(&ifp->if_snd, m0); m_freem(m0); if_statinc_ref(ifp, if_oerrors); continue; } /* Short on resources, just stop for now. */ break; } if (dmamap->dm_nsegs > sc->sc_txfree) { /* * Not enough free descriptors to transmit this * packet. We haven't committed anything yet, * so just unload the DMA map, put the packet * back on the queue, and punt. */ bus_dmamap_unload(sc->sc_dmat, dmamap); break; } IFQ_DEQUEUE(&ifp->if_snd, m0); /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); tdes0 = 0; /* to postpone 1st segment T0_OWN write */ lasttx = -1; for (nexttx = sc->sc_txnext, seg = 0; seg < dmamap->dm_nsegs; seg++, nexttx = MD_NEXTTX(nexttx)) { struct tdes *tdes = &sc->sc_txdescs[nexttx]; bus_addr_t p = dmamap->dm_segs[seg].ds_addr; bus_size_t z = dmamap->dm_segs[seg].ds_len; /* * If this is the first descriptor we're * enqueueing, don't set the OWN bit just * yet. That could cause a race condition. * We'll do it below. */ tdes->t3 = htole32(z); tdes->t2 = htole32(BUS_ADDR_LO32(p)); tdes->t1 = htole32(BUS_ADDR_HI32(p)); tdes->t0 &= htole32(T0_LD); tdes->t0 |= htole32(tdes0 | (15 << T0_TDRID) | T0_PT | sc->sc_t0cotso | T0_TRS); tdes0 = T0_OWN; /* 2nd and other segments */ /* NB; t0 DRID field contains zero */ lasttx = nexttx; } /* HW lacks of per-frame xmit done interrupt control */ /* Write deferred 1st segment T0_OWN at the final stage */ sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS); sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN); SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* submit one frame to xmit */ CSR_WRITE(sc, TXSUBMIT, 1); txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; txs->txs_lastdesc = lasttx; txs->txs_ndesc = dmamap->dm_nsegs; sc->sc_txfree -= txs->txs_ndesc; sc->sc_txnext = nexttx; sc->sc_txsfree--; sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext); /* * Pass the packet to any BPF listeners. */ bpf_mtap(ifp, m0, BPF_D_OUT); } if (sc->sc_txfree != ofree) { /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } #define EVENT_DEBUG 1 static void scx_watchdog(struct ifnet *ifp) { struct scx_softc *sc = ifp->if_softc; /* * Since we're not interrupting every packet, sweep * up before we report an error. */ txreap(sc); if (sc->sc_txfree != MD_NTXDESC) { aprint_error_dev(sc->sc_dev, "device timeout (txfree %d txsfree %d txnext %d)\n", sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext); if_statinc(ifp, if_oerrors); #if EVENT_DEBUG == 1 aprint_error_dev(sc->sc_dev, "tx frames %d, octects %d, bcast %d, mcast %d\n", mac_read(sc, GMACEVCNT(1)), mac_read(sc, GMACEVCNT(0)), mac_read(sc, GMACEVCNT(2)), mac_read(sc, GMACEVCNT(3))); aprint_error_dev(sc->sc_dev, "rx frames %d, octects %d, bcast %d, mcast %d\n", mac_read(sc, GMACEVCNT(27)), mac_read(sc, GMACEVCNT(28)), mac_read(sc, GMACEVCNT(30)), mac_read(sc, GMACEVCNT(31))); aprint_error_dev(sc->sc_dev, "current tdes addr %x, buf addr %x\n", mac_read(sc, 0x1048), mac_read(sc, 0x1050)); aprint_error_dev(sc->sc_dev, "current rdes addr %x, buf addr %x\n", mac_read(sc, 0x104c), mac_read(sc, 0x1054)); #endif /* Reset the interface. */ scx_init(ifp); } scx_start(ifp); } static int scx_intr(void *arg) { struct scx_softc *sc = arg; uint32_t enable, status; status = CSR_READ(sc, xINTSR); /* not W1C */ enable = CSR_READ(sc, xINTAEN); if ((status & enable) == 0) return 0; if (status & (IRQ_TX | IRQ_RX)) { CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX)); status = CSR_READ(sc, RXISR); CSR_WRITE(sc, RXISR, status); if (status & RXI_RC_ERR) aprint_error_dev(sc->sc_dev, "Rx error\n"); if (status & (RXI_PKTCNT | RXI_TMREXP)) { rxfill(sc); (void)CSR_READ(sc, RXAVAILCNT); /* clear IRQ_RX ? */ } status = CSR_READ(sc, TXISR); CSR_WRITE(sc, TXISR, status); if (status & TXI_TR_ERR) aprint_error_dev(sc->sc_dev, "Tx error\n"); if (status & (TXI_TXDONE | TXI_TMREXP)) { txreap(sc); (void)CSR_READ(sc, TXDONECNT); /* clear IRQ_TX ? */ } CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX)); } return 1; } static void txreap(struct scx_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct scx_txsoft *txs; uint32_t txstat; int i; for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN; i = MD_NEXTTXS(i), sc->sc_txsfree++) { txs = &sc->sc_txsoft[i]; SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0); if (txstat & T0_OWN) /* desc is still in use */ break; /* There is no way to tell transmission status per frame */ if_statinc(ifp, if_opackets); sc->sc_txfree += txs->txs_ndesc; bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } sc->sc_txsdirty = i; if (sc->sc_txsfree == MD_TXQUEUELEN) ifp->if_timer = 0; } static void rxfill(struct scx_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct scx_rxsoft *rxs; struct mbuf *m; uint32_t rxstat, rlen; int i; for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) { SCX_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = le32toh(sc->sc_rxdescs[i].r0); if (rxstat & R0_OWN) /* desc is left empty */ break; /* received frame length in R3 31:16 */ rlen = le32toh(sc->sc_rxdescs[i].r3) >> 16; /* R0_FS | R0_LS must have been marked for this desc */ rxs = &sc->sc_rxsoft[i]; bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* dispense new storage to receive frame */ m = rxs->rxs_mbuf; if (add_rxbuf(sc, i) != 0) { if_statinc(ifp, if_ierrors); /* resource shortage */ SCX_INIT_RXDESC(sc, i); /* then reuse */ bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } /* complete mbuf */ m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = rlen; m->m_flags |= M_HASFCS; if (rxstat & R0_CSUM) { uint32_t csum = M_CSUM_IPv4; if (rxstat & R0_CERR) csum |= M_CSUM_IPv4_BAD; m->m_pkthdr.csum_flags |= csum; } /* and pass to upper layer */ if_percpuq_enqueue(ifp->if_percpuq, m); } sc->sc_rxptr = i; } static int add_rxbuf(struct scx_softc *sc, int i) { struct scx_rxsoft *rxs = &sc->sc_rxsoft[i]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return ENOBUFS; } if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n", i, error); panic("add_rxbuf"); } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); SCX_INIT_RXDESC(sc, i); return 0; } static void rxdrain(struct scx_softc *sc) { struct scx_rxsoft *rxs; int i; for (i = 0; i < MD_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } #define LINK_DEBUG 0 static void mii_statchg(struct ifnet *ifp) { struct scx_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; const int Mbps[4] = { 10, 100, 1000, 0 }; uint32_t miisr, mcr, fcr; int spd; /* decode MIISR register value */ miisr = mac_read(sc, GMACMIISR); spd = Mbps[(miisr & MIISR_SPD) >> 1]; #if LINK_DEBUG == 1 static uint32_t oldmiisr = 0; if (miisr != oldmiisr) { printf("MII link status (0x%x) %s", miisr, (miisr & MIISR_LUP) ? "up" : "down"); if (miisr & MIISR_LUP) { printf(" spd%d", spd); if (miisr & MIISR_FDX) printf(",full-duplex"); } printf("\n"); } #endif /* Get flow control negotiation result. */ if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; /* Adjust speed 1000/100/10. */ mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES); if (sc->sc_miigmii) { if (spd != 1000) mcr |= MCR_PS; } else { if (spd == 100) mcr |= MCR_FES; } mcr |= MCR_CST | MCR_JE; if (sc->sc_miigmii == 0) mcr |= MCR_IBN; /* Adjust duplexity and PAUSE flow control. */ mcr &= ~MCR_USEFDX; fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE); if (miisr & MIISR_FDX) { if (sc->sc_flowflags & IFM_ETH_TXPAUSE) fcr |= FCR_TFE; if (sc->sc_flowflags & IFM_ETH_RXPAUSE) fcr |= FCR_RFE; mcr |= MCR_USEFDX; } mac_write(sc, GMACMCR, mcr); mac_write(sc, GMACFCR, fcr); #if LINK_DEBUG == 1 if (miisr != oldmiisr) { printf("%ctxfe, %crxfe\n", (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-'); } oldmiisr = miisr; #endif } static void scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct scx_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = sc->sc_flowflags | (mii->mii_media_active & ~IFM_ETH_FMASK); } static int mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct scx_softc *sc = device_private(self); uint32_t miia; int ntries; miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk; mac_write(sc, GMACGAR, miia | GAR_BUSY); for (ntries = 0; ntries < 1000; ntries++) { if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0) goto unbusy; DELAY(1); } return ETIMEDOUT; unbusy: *val = mac_read(sc, GMACGDR); return 0; } static int mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct scx_softc *sc = device_private(self); uint32_t miia; uint16_t dummy; int ntries; miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk; mac_write(sc, GMACGDR, val); mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY); for (ntries = 0; ntries < 1000; ntries++) { if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0) goto unbusy; DELAY(1); } return ETIMEDOUT; unbusy: mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */ return 0; } static void phy_tick(void *arg) { struct scx_softc *sc = arg; struct mii_data *mii = &sc->sc_mii; int s; s = splnet(); mii_tick(mii); splx(s); #ifdef GMAC_EVENT_COUNTERS /* 80 event counters exist */ #endif callout_schedule(&sc->sc_callout, hz); } static void resetuengine(struct scx_softc *sc) { if (CSR_READ(sc, CORESTAT) == 0) { /* make sure to stop */ CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP); CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP); WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP); WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP); } CSR_WRITE(sc, SWRESET, 0); /* reset operation */ CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */ CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS); WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS)); } #define UCODE_DEBUG 0 /* * 3 independent uengines exist to process host2media, media2host and * packet data flows. */ static void loaducode(struct scx_softc *sc) { uint32_t up, lo, sz; uint64_t addr; up = EE_READ(sc, 0x08); /* H->M ucode addr high */ lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */ sz = EE_READ(sc, 0x10); /* H->M ucode size */ sz *= 4; addr = ((uint64_t)up << 32) | lo; injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz); #if UCODE_DEBUG == 1 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz); #endif up = EE_READ(sc, 0x14); /* M->H ucode addr high */ lo = EE_READ(sc, 0x18); /* M->H ucode addr low */ sz = EE_READ(sc, 0x1c); /* M->H ucode size */ sz *= 4; addr = ((uint64_t)up << 32) | lo; injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz); #if UCODE_DEBUG == 1 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz); #endif lo = EE_READ(sc, 0x20); /* PKT ucode addr */ sz = EE_READ(sc, 0x24); /* PKT ucode size */ sz *= 4; injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz); #if UCODE_DEBUG == 1 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz); #endif } static void injectucode(struct scx_softc *sc, int port, bus_addr_t addr, bus_size_t size) { bus_space_handle_t bsh; bus_size_t off; uint32_t ucode; if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) { aprint_error_dev(sc->sc_dev, "eeprom map failure for ucode port 0x%x\n", port); return; } for (off = 0; off < size; off += 4) { ucode = bus_space_read_4(sc->sc_st, bsh, off); CSR_WRITE(sc, port, ucode); } bus_space_unmap(sc->sc_st, bsh, size); } static void forcephyloopback(struct scx_softc *sc) { struct device *d = sc->sc_dev; uint16_t val; int loop, err; err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val); if (err) { aprint_error_dev(d, "forcephyloopback() failed\n"); return; } if (val & BMCR_PDOWN) val &= ~BMCR_PDOWN; val |= BMCR_ISO; (void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val); loop = 100; do { (void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val); } while (loop-- > 0 && (val & (BMCR_PDOWN | BMCR_ISO)) != 0); (void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_LOOP); loop = 100; do { (void)mii_readreg(d, sc->sc_phy_id, MII_BMSR, &val); } while (loop-- > 0 && (val & BMSR_LINK) != 0); } static void resetphytonormal(struct scx_softc *sc) { struct device *d = sc->sc_dev; uint16_t val; int loop, err; err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val); if (err) { aprint_error_dev(d, "resetphytonormal() failed\n"); } val &= ~BMCR_LOOP; (void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val); loop = 100; do { (void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val); } while (loop-- > 0 && (val & BMCR_LOOP) != 0); (void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_RESET); loop = 100; do { (void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val); } while (loop-- > 0 && (val & BMCR_RESET) != 0); } /* GAR 5:2 MDIO frequency selection */ static int get_mdioclk(uint32_t freq) { freq /= 1000 * 1000; if (freq < 35) return GAR_MDIO_25_35MHZ; if (freq < 60) return GAR_MDIO_35_60MHZ; if (freq < 100) return GAR_MDIO_60_100MHZ; if (freq < 150) return GAR_MDIO_100_150MHZ; if (freq < 250) return GAR_MDIO_150_250MHZ; return GAR_MDIO_250_300MHZ; } #define HWFEA_DEBUG 1 static void dump_hwfeature(struct scx_softc *sc) { #if HWFEA_DEBUG == 1 struct { uint32_t bit; const char *des; } field[] = { { 27, "SA/VLAN insertion replacement enabled" }, { 26, "flexible PPS enabled" }, { 25, "time stamping with internal system enabled" }, { 24, "alternate/enhanced descriptor enabled" }, { 19, "rx FIFO >2048 enabled" }, { 18, "type 2 IP checksum offload enabled" }, { 17, "type 1 IP checksum offload enabled" }, { 16, "Tx checksum offload enabled" }, { 15, "AV feature enabled" }, { 14, "EEE energy save feature enabled" }, { 13, "1588-2008 version 2 advanced feature enabled" }, { 12, "only 1588-2002 version 1 feature enabled" }, { 11, "RMON event counter enabled" }, { 10, "PMT magic packet enabled" }, { 9, "PMT remote wakeup enabled" }, { 8, "MDIO enabled", }, { 7, "L3/L4 filter enabled" }, { 6, "TBI/SGMII/RTBI support enabled" }, { 5, "supplimental MAC address enabled" }, { 4, "receive hash filter enabled" }, { 3, "hash size is expanded" }, { 2, "Half Duplex enabled" }, { 1, "1000 Mbps enabled" }, { 0, "10/100 Mbps enabled" }, }; const char *nameofmii[] = { "GMII or MII", "RGMII", "SGMII", "TBI", "RMII", "RTBI", "SMII", "RevMII" }; uint32_t hwfea, mtype, txchan, rxchan; hwfea = CSR_READ(sc, HWFEA); mtype = (hwfea & __BITS(30,28)) >> 28; aprint_normal("HWFEA 0x%08x\n", hwfea); aprint_normal("%s <30:28>\n", nameofmii[mtype]); for (unsigned i = 0; i < __arraycount(field); i++) { if ((hwfea & (1U << field[i].bit)) == 0) continue; aprint_normal("%s <%d>\n", field[i].des, field[i].bit); } if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0) aprint_normal("+%d tx channel available <23,22>\n", txchan); if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0) aprint_normal("+%d rx channel available <21:20>\n", rxchan); return; #endif }