/* $NetBSD: tegra_soctherm.c,v 1.13 2021/01/27 03:10:19 thorpej Exp $ */ /*- * Copyright (c) 2015 Jared D. McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: tegra_soctherm.c,v 1.13 2021/01/27 03:10:19 thorpej Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #define FUSE_TSENSOR_CALIB_CP_TS_BASE __BITS(12,0) #define FUSE_TSENSOR_CALIB_FT_TS_BASE __BITS(25,13) #define FUSE_TSENSOR8_CALIB_REG 0x180 #define FUSE_TSENSOR8_CALIB_CP_TS_BASE __BITS(9,0) #define FUSE_TSENSOR8_CALIB_FT_TS_BASE __BITS(20,10) #define FUSE_SPARE_REALIGNMENT_REG 0x1fc #define FUSE_SPARE_REALIGNMENT_CP __BITS(5,0) #define FUSE_SPARE_REALIGNMENT_FT __BITS(25,21) static int tegra_soctherm_match(device_t, cfdata_t, void *); static void tegra_soctherm_attach(device_t, device_t, void *); struct tegra_soctherm_config { uint32_t init_pdiv; uint32_t init_hotspot_off; uint32_t nominal_calib_ft; uint32_t nominal_calib_cp; uint32_t tall; uint32_t tsample; uint32_t tiddq_en; uint32_t ten_count; uint32_t pdiv; uint32_t tsample_ate; uint32_t pdiv_ate; }; static const struct tegra_soctherm_config tegra124_soctherm_config = { .init_pdiv = 0x8888, .init_hotspot_off = 0x60600, .nominal_calib_ft = 105, .nominal_calib_cp = 25, .tall = 16300, .tsample = 120, .tiddq_en = 1, .ten_count = 1, .pdiv = 8, .tsample_ate = 480, .pdiv_ate = 8 }; struct tegra_soctherm_sensor { envsys_data_t s_data; u_int s_base; u_int s_fuse; int s_fuse_corr_alpha; int s_fuse_corr_beta; int16_t s_therm_a; int16_t s_therm_b; }; static const struct tegra_soctherm_sensor tegra_soctherm_sensors[] = { { .s_data = { .desc = "CPU0" }, .s_base = 0x0c0, .s_fuse = 0x098, .s_fuse_corr_alpha = 1135400, .s_fuse_corr_beta = -6266900 }, { .s_data = { .desc = "CPU1" }, .s_base = 0x0e0, .s_fuse = 0x084, .s_fuse_corr_alpha = 1122220, .s_fuse_corr_beta = -5700700 }, { .s_data = { .desc = "CPU2" }, .s_base = 0x100, .s_fuse = 0x088, .s_fuse_corr_alpha = 1127000, .s_fuse_corr_beta = -6768200 }, { .s_data = { .desc = "CPU3" }, .s_base = 0x120, .s_fuse = 0x12c, .s_fuse_corr_alpha = 1110900, .s_fuse_corr_beta = -6232000 }, { .s_data = { .desc = "MEM0" }, .s_base = 0x140, .s_fuse = 0x158, .s_fuse_corr_alpha = 1122300, .s_fuse_corr_beta = -5936400 }, { .s_data = { .desc = "MEM1" }, .s_base = 0x160, .s_fuse = 0x15c, .s_fuse_corr_alpha = 1145700, .s_fuse_corr_beta = -7124600 }, { .s_data = { .desc = "GPU" }, .s_base = 0x180, .s_fuse = 0x154, .s_fuse_corr_alpha = 1120100, .s_fuse_corr_beta = -6000500 }, { .s_data = { .desc = "PLLX" }, .s_base = 0x1a0, .s_fuse = 0x160, .s_fuse_corr_alpha = 1106500, .s_fuse_corr_beta = -6729300 }, }; struct tegra_soctherm_softc { device_t sc_dev; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; struct clk *sc_clk_tsensor; struct clk *sc_clk_soctherm; struct fdtbus_reset *sc_rst_soctherm; struct sysmon_envsys *sc_sme; struct tegra_soctherm_sensor *sc_sensors; const struct tegra_soctherm_config *sc_config; uint32_t sc_base_cp; uint32_t sc_base_ft; int32_t sc_actual_temp_cp; int32_t sc_actual_temp_ft; }; static int tegra_soctherm_init_clocks(struct tegra_soctherm_softc *); static void tegra_soctherm_init_sensors(device_t); static void tegra_soctherm_init_sensor(struct tegra_soctherm_softc *, struct tegra_soctherm_sensor *); static void tegra_soctherm_refresh(struct sysmon_envsys *, envsys_data_t *); static int tegra_soctherm_decodeint(uint32_t, uint32_t); static int64_t tegra_soctherm_divide(int64_t, int64_t); CFATTACH_DECL_NEW(tegra_soctherm, sizeof(struct tegra_soctherm_softc), tegra_soctherm_match, tegra_soctherm_attach, NULL, NULL); #define SOCTHERM_READ(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define SOCTHERM_WRITE(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) #define SOCTHERM_SET_CLEAR(sc, reg, set, clr) \ tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (reg), (set), (clr)) #define SENSOR_READ(sc, s, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg)) #define SENSOR_WRITE(sc, s, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (val)) #define SENSOR_SET_CLEAR(sc, s, reg, set, clr) \ tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (set), (clr)) static const struct device_compatible_entry compat_data[] = { { .compat = "nvidia,tegra124-soctherm", .data = &tegra124_soctherm_config }, DEVICE_COMPAT_EOL }; static int tegra_soctherm_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_compatible_match(faa->faa_phandle, compat_data); } static void tegra_soctherm_attach(device_t parent, device_t self, void *aux) { struct tegra_soctherm_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; bus_addr_t addr; bus_size_t size; int error; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get registers\n"); return; } sc->sc_clk_tsensor = fdtbus_clock_get(phandle, "tsensor"); if (sc->sc_clk_tsensor == NULL) { aprint_error(": couldn't get clock tsensor\n"); return; } sc->sc_clk_soctherm = fdtbus_clock_get(phandle, "soctherm"); if (sc->sc_clk_soctherm == NULL) { aprint_error(": couldn't get clock soctherm\n"); return; } sc->sc_rst_soctherm = fdtbus_reset_get(phandle, "soctherm"); if (sc->sc_rst_soctherm == NULL) { aprint_error(": couldn't get reset soctherm\n"); return; } sc->sc_dev = self; sc->sc_bst = faa->faa_bst; error = bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh); if (error) { aprint_error(": couldn't map %#" PRIxBUSADDR ": %d", addr, error); return; } aprint_naive("\n"); aprint_normal(": SOC_THERM\n"); sc->sc_config = of_compatible_lookup(phandle, compat_data)->data; if (sc->sc_config == NULL) { aprint_error_dev(self, "unsupported SoC\n"); return; } if (tegra_soctherm_init_clocks(sc) != 0) return; config_defer(self, tegra_soctherm_init_sensors); } static int tegra_soctherm_init_clocks(struct tegra_soctherm_softc *sc) { int error; fdtbus_reset_assert(sc->sc_rst_soctherm); error = clk_set_rate(sc->sc_clk_soctherm, 51000000); if (error) { aprint_error_dev(sc->sc_dev, "couldn't set soctherm rate: %d\n", error); return error; } error = clk_set_rate(sc->sc_clk_tsensor, 400000); if (error) { aprint_error_dev(sc->sc_dev, "couldn't set tsensor rate: %d\n", error); return error; } error = clk_enable(sc->sc_clk_tsensor); if (error) { aprint_error_dev(sc->sc_dev, "couldn't enable tsensor: %d\n", error); return error; } error = clk_enable(sc->sc_clk_soctherm); if (error) { aprint_error_dev(sc->sc_dev, "couldn't enable soctherm: %d\n", error); return error; } fdtbus_reset_deassert(sc->sc_rst_soctherm); return 0; } static void tegra_soctherm_init_sensors(device_t dev) { struct tegra_soctherm_softc * const sc = device_private(dev); const struct tegra_soctherm_config *config = sc->sc_config; const u_int nsensors = __arraycount(tegra_soctherm_sensors); const size_t len = sizeof(*sc->sc_sensors) * nsensors; uint32_t val; u_int n; val = tegra_fuse_read(FUSE_TSENSOR8_CALIB_REG); sc->sc_base_cp = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_CP_TS_BASE); sc->sc_base_ft = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_FT_TS_BASE); val = tegra_fuse_read(FUSE_SPARE_REALIGNMENT_REG); const int calib_cp = tegra_soctherm_decodeint(val, FUSE_SPARE_REALIGNMENT_CP); const int calib_ft = tegra_soctherm_decodeint(val, FUSE_SPARE_REALIGNMENT_FT); sc->sc_actual_temp_cp = 2 * config->nominal_calib_cp + calib_cp; sc->sc_actual_temp_ft = 2 * config->nominal_calib_ft + calib_ft; sc->sc_sme = sysmon_envsys_create(); sc->sc_sme->sme_name = device_xname(sc->sc_dev); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = tegra_soctherm_refresh; sc->sc_sensors = kmem_zalloc(len, KM_SLEEP); for (n = 0; n < nsensors; n++) { sc->sc_sensors[n] = tegra_soctherm_sensors[n]; tegra_soctherm_init_sensor(sc, &sc->sc_sensors[n]); } SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_PDIV_REG, config->init_pdiv); SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_HOTSPOT_OFF_REG, config->init_hotspot_off); sysmon_envsys_register(sc->sc_sme); } static void tegra_soctherm_init_sensor(struct tegra_soctherm_softc *sc, struct tegra_soctherm_sensor *s) { const struct tegra_soctherm_config *config = sc->sc_config; int64_t temp_a, temp_b, tmp; uint32_t val; val = tegra_fuse_read(s->s_fuse); const int calib_cp = tegra_soctherm_decodeint(val, FUSE_TSENSOR_CALIB_CP_TS_BASE); const int calib_ft = tegra_soctherm_decodeint(val, FUSE_TSENSOR_CALIB_FT_TS_BASE); const int actual_cp = sc->sc_base_cp * 64 + calib_cp; const int actual_ft = sc->sc_base_ft * 32 + calib_ft; const int64_t d_sensor = actual_ft - actual_cp; const int64_t d_temp = sc->sc_actual_temp_ft - sc->sc_actual_temp_cp; const int mult = config->pdiv * config->tsample_ate; const int div = config->tsample * config->pdiv_ate; temp_a = tegra_soctherm_divide(d_temp * 0x2000 * mult, d_sensor * div); tmp = (int64_t)actual_ft * sc->sc_actual_temp_cp - (int64_t)actual_cp * sc->sc_actual_temp_ft; temp_b = tegra_soctherm_divide(tmp, d_sensor); temp_a = tegra_soctherm_divide( temp_a * s->s_fuse_corr_alpha, 1000000); temp_b = (uint16_t)tegra_soctherm_divide( temp_b * s->s_fuse_corr_alpha + s->s_fuse_corr_beta, 1000000); s->s_therm_a = (int16_t)temp_a; s->s_therm_b = (int16_t)temp_b; SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET, SOC_THERM_TSENSOR_CONFIG0_STATUS_CLR | SOC_THERM_TSENSOR_CONFIG0_STOP, 0); SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET, __SHIFTIN(config->tall, SOC_THERM_TSENSOR_CONFIG0_TALL) | SOC_THERM_TSENSOR_CONFIG0_STOP); SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG1_OFFSET, __SHIFTIN(config->tsample - 1, SOC_THERM_TSENSOR_CONFIG1_TSAMPLE) | __SHIFTIN(config->tiddq_en, SOC_THERM_TSENSOR_CONFIG1_TIDDQ_EN) | __SHIFTIN(config->ten_count, SOC_THERM_TSENSOR_CONFIG1_TEN_COUNT) | SOC_THERM_TSENSOR_CONFIG1_TEMP_ENABLE); SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG2_OFFSET, __SHIFTIN((uint16_t)s->s_therm_a, SOC_THERM_TSENSOR_CONFIG2_THERM_A) | __SHIFTIN((uint16_t)s->s_therm_b, SOC_THERM_TSENSOR_CONFIG2_THERM_B)); SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET, 0, SOC_THERM_TSENSOR_CONFIG0_STOP); s->s_data.units = ENVSYS_STEMP; s->s_data.state = ENVSYS_SINVALID; sysmon_envsys_sensor_attach(sc->sc_sme, &s->s_data); } static void tegra_soctherm_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { struct tegra_soctherm_softc * const sc = sme->sme_cookie; struct tegra_soctherm_sensor *s = (struct tegra_soctherm_sensor *)edata; uint32_t status; status = SENSOR_READ(sc, s, SOC_THERM_TSENSOR_STATUS1_OFFSET); if (status & SOC_THERM_TSENSOR_STATUS1_TEMP_VALID) { const u_int temp = __SHIFTOUT(status, SOC_THERM_TSENSOR_STATUS1_TEMP); int64_t val = ((temp >> 8) & 0xff) * 1000000; if (temp & 0x80) val += 500000; if (temp & 0x02) val = -val; edata->value_cur = val + 273150000; edata->state = ENVSYS_SVALID; } else { edata->state = ENVSYS_SINVALID; } } static int tegra_soctherm_decodeint(uint32_t val, uint32_t bitmask) { const uint32_t v = __SHIFTOUT(val, bitmask); const int bits = popcount32(bitmask); int ret = v << (32 - bits); return ret >> (32 - bits); } static int64_t tegra_soctherm_divide(int64_t num, int64_t denom) { int64_t ret = ((num << 16) * 2 + 1) / (2 * denom); return ret >> 16; }