/* $NetBSD: lock.h,v 1.39 2021/05/30 02:28:59 joerg Exp $ */ /*- * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Machine-dependent spin lock operations. * * NOTE: The SWP insn used here is available only on ARM architecture * version 3 and later (as well as 2a). What we are going to do is * expect that the kernel will trap and emulate the insn. That will * be slow, but give us the atomicity that we need. */ #ifndef _ARM_LOCK_H_ #define _ARM_LOCK_H_ static __inline int __SIMPLELOCK_LOCKED_P(const __cpu_simple_lock_t *__ptr) { return *__ptr == __SIMPLELOCK_LOCKED; } static __inline int __SIMPLELOCK_UNLOCKED_P(const __cpu_simple_lock_t *__ptr) { return *__ptr == __SIMPLELOCK_UNLOCKED; } static __inline void __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr) { *__ptr = __SIMPLELOCK_UNLOCKED; } static __inline void __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr) { *__ptr = __SIMPLELOCK_LOCKED; } #if defined(_ARM_ARCH_6) static __inline unsigned int __arm_load_exclusive(__cpu_simple_lock_t *__alp) { unsigned int __rv; if (/*CONSTCOND*/sizeof(*__alp) == 1) { __asm __volatile("ldrexb\t%0,[%1]" : "=r"(__rv) : "r"(__alp)); } else { __asm __volatile("ldrex\t%0,[%1]" : "=r"(__rv) : "r"(__alp)); } return __rv; } /* returns 0 on success and 1 on failure */ static __inline unsigned int __arm_store_exclusive(__cpu_simple_lock_t *__alp, unsigned int __val) { unsigned int __rv; if (/*CONSTCOND*/sizeof(*__alp) == 1) { __asm __volatile("strexb\t%0,%1,[%2]" : "=&r"(__rv) : "r"(__val), "r"(__alp) : "cc", "memory"); } else { __asm __volatile("strex\t%0,%1,[%2]" : "=&r"(__rv) : "r"(__val), "r"(__alp) : "cc", "memory"); } return __rv; } #elif defined(_KERNEL) static __inline unsigned char __swp(unsigned char __val, __cpu_simple_lock_t *__ptr) { uint32_t __val32; __asm volatile("swpb %0, %1, [%2]" : "=&r" (__val32) : "r" (__val), "r" (__ptr) : "memory"); return __val32; } #else /* * On MP Cortex, SWP no longer guarantees atomic results. Thus we pad * out SWP so that when the cpu generates an undefined exception we can replace * the SWP/MOV instructions with the right LDREX/STREX instructions. * * This is why we force the SWP into the template needed for LDREX/STREX * including the extra instructions and extra register for testing the result. */ static __inline int __swp(int __val, __cpu_simple_lock_t *__ptr) { int __tmp, __rv; __asm volatile( #if 1 "1:\t" "swp %[__rv], %[__val], [%[__ptr]]" "\n\t" "b 2f" #else "1:\t" "ldrex %[__rv],[%[__ptr]]" "\n\t" "strex %[__tmp],%[__val],[%[__ptr]]" #endif "\n\t" "cmp %[__tmp],#0" "\n\t" "bne 1b" "\n" "2:" : [__rv] "=&r" (__rv), [__tmp] "=&r" (__tmp) : [__val] "r" (__val), [__ptr] "r" (__ptr) : "cc", "memory"); return __rv; } #endif /* !_ARM_ARCH_6 */ /* load/dmb implies load-acquire */ static __inline void __arm_load_dmb(void) { #if defined(_ARM_ARCH_7) __asm __volatile("dmb ish" ::: "memory"); #elif defined(_ARM_ARCH_6) __asm __volatile("mcr\tp15,0,%0,c7,c10,5" :: "r"(0) : "memory"); #endif } /* dmb/store implies store-release */ static __inline void __arm_dmb_store(void) { #if defined(_ARM_ARCH_7) __asm __volatile("dmb ish" ::: "memory"); #elif defined(_ARM_ARCH_6) __asm __volatile("mcr\tp15,0,%0,c7,c10,5" :: "r"(0) : "memory"); #endif } static __inline void __unused __cpu_simple_lock_init(__cpu_simple_lock_t *__alp) { *__alp = __SIMPLELOCK_UNLOCKED; } #if !defined(__thumb__) || defined(_ARM_ARCH_T2) static __inline void __unused __cpu_simple_lock(__cpu_simple_lock_t *__alp) { #if defined(_ARM_ARCH_6) do { /* spin */ } while (__arm_load_exclusive(__alp) != __SIMPLELOCK_UNLOCKED || __arm_store_exclusive(__alp, __SIMPLELOCK_LOCKED)); __arm_load_dmb(); #else while (__swp(__SIMPLELOCK_LOCKED, __alp) != __SIMPLELOCK_UNLOCKED) continue; #endif } #else void __cpu_simple_lock(__cpu_simple_lock_t *); #endif #if !defined(__thumb__) || defined(_ARM_ARCH_T2) static __inline int __unused __cpu_simple_lock_try(__cpu_simple_lock_t *__alp) { #if defined(_ARM_ARCH_6) do { if (__arm_load_exclusive(__alp) != __SIMPLELOCK_UNLOCKED) { return 0; } } while (__arm_store_exclusive(__alp, __SIMPLELOCK_LOCKED)); __arm_load_dmb(); return 1; #else return (__swp(__SIMPLELOCK_LOCKED, __alp) == __SIMPLELOCK_UNLOCKED); #endif } #else int __cpu_simple_lock_try(__cpu_simple_lock_t *); #endif static __inline void __unused __cpu_simple_unlock(__cpu_simple_lock_t *__alp) { #if defined(_ARM_ARCH_8) && defined(__LP64__) if (sizeof(*__alp) == 1) { __asm __volatile("stlrb\t%w0, [%1]" :: "r"(__SIMPLELOCK_UNLOCKED), "r"(__alp) : "memory"); } else { __asm __volatile("stlr\t%0, [%1]" :: "r"(__SIMPLELOCK_UNLOCKED), "r"(__alp) : "memory"); } #else __arm_dmb_store(); *__alp = __SIMPLELOCK_UNLOCKED; #endif } #endif /* _ARM_LOCK_H_ */