/* $NetBSD: asan.h,v 1.8 2022/04/02 11:16:07 skrll Exp $ */ /* * Copyright (c) 2020 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Nick Hudson, and is part of the KASAN subsystem of the NetBSD kernel. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "opt_efi.h" #include #include #include #include #include #include #define KASAN_MD_SHADOW_START VM_KERNEL_KASAN_BASE #define KASAN_MD_SHADOW_END VM_KERNEL_KASAN_END #define __MD_KERNMEM_BASE KERNEL_BASE static inline int8_t * kasan_md_addr_to_shad(const void *addr) { vaddr_t va = (vaddr_t)addr; return (int8_t *)(KASAN_MD_SHADOW_START + ((va - __MD_KERNMEM_BASE) >> KASAN_SHADOW_SCALE_SHIFT)); } static inline bool kasan_md_unsupported(vaddr_t addr) { return addr < VM_MIN_KERNEL_ADDRESS || addr >= KASAN_MD_SHADOW_START; } /* -------------------------------------------------------------------------- */ /* * Early mapping, used to map just the stack at boot time. We rely on the fact * that VA = PA + KERNEL_BASE. */ /* * KASAN_NEARLYPAGES is hard to work out. * * The INIT_ARM_TOTAL_STACK shadow is reduced by the KASAN_SHADOW_SCALE_SIZE * factor. This shadow mapping is likely to span more than one L2 page tables * and, as a result, more than one PAGE_SIZE block. The L2 page tables might * span more than one L1 page table entry as well. * * To ensure we have enough start with the assumption of 1 L1 page table, and * the number of pages to map the shadow... then double for the spanning as * described above */ #define KASAN_NEARLYPAGES \ (2 * (1 + howmany(INIT_ARM_TOTAL_STACK / KASAN_SHADOW_SCALE_SIZE, PAGE_SIZE))) static bool __md_early __read_mostly; static size_t __md_nearlyl1pts __attribute__((__section__(".data"))) = 0; static size_t __md_nearlypages __attribute__((__section__(".data"))); static uint8_t __md_earlypages[KASAN_NEARLYPAGES * PAGE_SIZE] __aligned(PAGE_SIZE) __attribute__((__section__(".data"))); static vaddr_t __md_palloc(void) { paddr_t pa; if (__predict_false(__md_early)) { KASSERTMSG(__md_nearlypages < KASAN_NEARLYPAGES, "__md_nearlypages %zu", __md_nearlypages); vaddr_t va = (vaddr_t)(&__md_earlypages[0] + __md_nearlypages * PAGE_SIZE); __md_nearlypages++; __builtin_memset((void *)va, 0, PAGE_SIZE); return KERN_VTOPHYS(va); } if (!uvm.page_init_done) { if (uvm_page_physget(&pa) == false) panic("KASAN can't get a page"); return pa; } struct vm_page *pg; retry: pg = uvm_pagealloc(NULL, 0, NULL, 0); if (pg == NULL) { uvm_wait(__func__); goto retry; } pa = VM_PAGE_TO_PHYS(pg); return pa; } static void kasan_md_shadow_map_page(vaddr_t va) { const uint32_t mask = L1_TABLE_SIZE - 1; const paddr_t ttb = (paddr_t)(armreg_ttbr1_read() & ~mask); pd_entry_t * const pdep = (pd_entry_t *)KERN_PHYSTOV(ttb); const size_t l1slot = l1pte_index(va); vaddr_t l2ptva; KASSERT((va & PAGE_MASK) == 0); extern bool kasan_l2pts_created; if (__predict_true(kasan_l2pts_created)) { /* * The shadow map area L2PTs were allocated and mapped * by arm32_kernel_vm_init. Use the array of pv_addr_t * to get the l2ptva. */ extern pv_addr_t kasan_l2pt[]; const size_t off = va - KASAN_MD_SHADOW_START; const size_t segoff = off & (L2_S_SEGSIZE - 1); const size_t idx = off / L2_S_SEGSIZE; const vaddr_t segl2ptva = kasan_l2pt[idx].pv_va; l2ptva = segl2ptva + l1pte_index(segoff) * L2_TABLE_SIZE_REAL; } else { /* * An L1PT entry is/may be required for bootstrap tables. As a * page gives enough space to multiple L2PTs the previous call * might have already created the L2PT. */ if (!l1pte_page_p(pdep[l1slot])) { const paddr_t l2ptpa = __md_palloc(); const vaddr_t segl2va = va & -L2_S_SEGSIZE; const size_t segl1slot = l1pte_index(segl2va); __md_nearlyl1pts++; const pd_entry_t npde = L1_C_PROTO | l2ptpa | L1_C_DOM(PMAP_DOMAIN_KERNEL); l1pte_set(pdep + segl1slot, npde); /* * No need for PDE_SYNC_RANGE here as we're creating * the bootstrap tables */ } l2ptva = KERN_PHYSTOV(l1pte_pa(pdep[l1slot])); } pt_entry_t * l2pt = (pt_entry_t *)l2ptva; pt_entry_t * const ptep = &l2pt[l2pte_index(va)]; if (!l2pte_valid_p(*ptep)) { const int prot = VM_PROT_READ | VM_PROT_WRITE; const paddr_t pa = __md_palloc(); pt_entry_t npte = L2_S_PROTO | pa | (__md_early ? 0 : pte_l2_s_cache_mode_pt) | L2_S_PROT(PTE_KERNEL, prot); l2pte_set(ptep, npte, 0); if (!__md_early) PTE_SYNC(ptep); __builtin_memset((void *)va, 0, PAGE_SIZE); } } /* * Map the init stacks of the BP and APs. We will map the rest in kasan_init. */ static void kasan_md_early_init(void *stack) { /* * We come through here twice. The first time is for generic_start * and the bootstrap tables. The second is for arm32_kernel_vm_init * and the real tables. * * In the first we have to create L1PT entries, whereas in the * second arm32_kernel_vm_init has setup kasan_l1pts (and the L1PT * entries for them */ __md_early = true; __md_nearlypages = __md_nearlyl1pts; kasan_shadow_map(stack, INIT_ARM_TOTAL_STACK); __md_early = false; } static void kasan_md_init(void) { extern vaddr_t kasan_kernelstart; extern vaddr_t kasan_kernelsize; kasan_shadow_map((void *)kasan_kernelstart, kasan_kernelsize); /* The VAs we've created until now. */ vaddr_t eva = pmap_growkernel(VM_KERNEL_VM_BASE); kasan_shadow_map((void *)VM_KERNEL_VM_BASE, eva - VM_KERNEL_VM_BASE); } static inline bool __md_unwind_end(const char *name) { static const char * const vectors[] = { "undefined_entry", "swi_entry", "prefetch_abort_entry", "data_abort_entry", "address_exception_entry", "irq_entry", "fiqvector" }; for (size_t i = 0; i < __arraycount(vectors); i++) { if (!strncmp(name, vectors[i], strlen(vectors[i]))) return true; } return false; } static void kasan_md_unwind(void) { uint32_t lr, *fp; const char *mod; const char *sym; size_t nsym; int error; fp = (uint32_t *)__builtin_frame_address(0); nsym = 0; while (1) { /* * normal frame * fp[ 0] saved code pointer * fp[-1] saved lr value * fp[-2] saved sp value * fp[-3] saved fp value */ lr = fp[-1]; if (lr < VM_MIN_KERNEL_ADDRESS) { break; } error = ksyms_getname(&mod, &sym, (vaddr_t)lr, KSYMS_PROC); if (error) { break; } printf("#%zu %p in %s <%s>\n", nsym, (void *)lr, sym, mod); if (__md_unwind_end(sym)) { break; } fp = (uint32_t *)fp[-3]; if (fp == NULL) { break; } nsym++; if (nsym >= 15) { break; } } }