/* $NetBSD: gicv3_its.c,v 1.35 2023/11/11 17:35:45 tnn Exp $ */ /*- * Copyright (c) 2018 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jared McNeill . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #define _INTR_PRIVATE #include __KERNEL_RCSID(0, "$NetBSD: gicv3_its.c,v 1.35 2023/11/11 17:35:45 tnn Exp $"); #include #include #include #include #include #include #include #include #include #include /* * ITS translation table sizes */ #define GITS_COMMANDS_SIZE 0x1000 #define GITS_COMMANDS_ALIGN 0x10000 #define GITS_ITT_ALIGN 0x100 /* * IIDR values used for errata */ #define GITS_IIDR_PID_CAVIUM_THUNDERX 0xa1 #define GITS_IIDR_IMP_CAVIUM 0x34c #define GITS_IIDR_CAVIUM_ERRATA_MASK (GITS_IIDR_Implementor|GITS_IIDR_ProductID|GITS_IIDR_Variant) #define GITS_IIDR_CAVIUM_ERRATA_VALUE \ (__SHIFTIN(GITS_IIDR_IMP_CAVIUM, GITS_IIDR_Implementor) | \ __SHIFTIN(GITS_IIDR_PID_CAVIUM_THUNDERX, GITS_IIDR_ProductID) | \ __SHIFTIN(0, GITS_IIDR_Variant)) static const char * gits_cache_type[] = { [GITS_Cache_DEVICE_nGnRnE] = "Device-nGnRnE", [GITS_Cache_NORMAL_NC] = "Non-cacheable", [GITS_Cache_NORMAL_RA_WT] = "Cacheable RA WT", [GITS_Cache_NORMAL_RA_WB] = "Cacheable RA WB", [GITS_Cache_NORMAL_WA_WT] = "Cacheable WA WT", [GITS_Cache_NORMAL_WA_WB] = "Cacheable WA WB", [GITS_Cache_NORMAL_RA_WA_WT] = "Cacheable RA WA WT", [GITS_Cache_NORMAL_RA_WA_WB] = "Cacheable RA WA WB", }; static const char * gits_share_type[] = { [GITS_Shareability_NS] = "Non-shareable", [GITS_Shareability_IS] = "Inner shareable", [GITS_Shareability_OS] = "Outer shareable", [3] = "(Reserved)", }; static inline uint32_t gits_read_4(struct gicv3_its *its, bus_size_t reg) { return bus_space_read_4(its->its_bst, its->its_bsh, reg); } static inline void gits_write_4(struct gicv3_its *its, bus_size_t reg, uint32_t val) { bus_space_write_4(its->its_bst, its->its_bsh, reg, val); } static inline uint64_t gits_read_8(struct gicv3_its *its, bus_size_t reg) { return bus_space_read_8(its->its_bst, its->its_bsh, reg); } static inline void gits_write_8(struct gicv3_its *its, bus_size_t reg, uint64_t val) { bus_space_write_8(its->its_bst, its->its_bsh, reg, val); } static inline void gits_command(struct gicv3_its *its, const struct gicv3_its_command *cmd) { uint64_t cwriter; u_int woff; cwriter = gits_read_8(its, GITS_CWRITER); woff = cwriter & GITS_CWRITER_Offset; #ifdef DIAGNOSTIC uint64_t creadr = gits_read_8(its, GITS_CREADR); KASSERT(!ISSET(creadr, GITS_CREADR_Stalled)); KASSERT(((woff + sizeof(cmd->dw)) & (its->its_cmd.len - 1)) != (creadr & GITS_CREADR_Offset)); #endif uint64_t *dw = (uint64_t *)(its->its_cmd.base + woff); for (int i = 0; i < __arraycount(cmd->dw); i++) dw[i] = htole64(cmd->dw[i]); bus_dmamap_sync(its->its_dmat, its->its_cmd.map, woff, sizeof(cmd->dw), BUS_DMASYNC_PREWRITE); woff += sizeof(cmd->dw); if (woff == its->its_cmd.len) woff = 0; gits_write_8(its, GITS_CWRITER, woff); } static inline void gits_command_mapc(struct gicv3_its *its, uint16_t icid, uint64_t rdbase, bool v) { struct gicv3_its_command cmd; KASSERT((rdbase & 0xffff) == 0); /* * Map a collection table entry (ICID) to the target redistributor (RDbase). */ memset(&cmd, 0, sizeof(cmd)); cmd.dw[0] = GITS_CMD_MAPC; cmd.dw[2] = icid; if (v) { cmd.dw[2] |= rdbase; cmd.dw[2] |= __BIT(63); } gits_command(its, &cmd); } static inline void gits_command_mapd(struct gicv3_its *its, uint32_t deviceid, uint64_t itt_addr, u_int size, bool v) { struct gicv3_its_command cmd; KASSERT((itt_addr & 0xff) == 0); /* * Map a device table entry (DeviceID) to its associated ITT (ITT_addr). */ memset(&cmd, 0, sizeof(cmd)); cmd.dw[0] = GITS_CMD_MAPD | ((uint64_t)deviceid << 32); cmd.dw[1] = size; if (v) { cmd.dw[2] = itt_addr | __BIT(63); } gits_command(its, &cmd); } static inline void gits_command_mapti(struct gicv3_its *its, uint32_t deviceid, uint32_t eventid, uint32_t pintid, uint16_t icid) { struct gicv3_its_command cmd; /* * Map the event defined by EventID and DeviceID to its associated ITE, defined by ICID and pINTID * in the ITT associated with DeviceID. */ memset(&cmd, 0, sizeof(cmd)); cmd.dw[0] = GITS_CMD_MAPTI | ((uint64_t)deviceid << 32); cmd.dw[1] = eventid | ((uint64_t)pintid << 32); cmd.dw[2] = icid; gits_command(its, &cmd); } static inline void gits_command_movi(struct gicv3_its *its, uint32_t deviceid, uint32_t eventid, uint16_t icid) { struct gicv3_its_command cmd; /* * Update the ICID field in the ITT entry for the event defined by DeviceID and * EventID. */ memset(&cmd, 0, sizeof(cmd)); cmd.dw[0] = GITS_CMD_MOVI | ((uint64_t)deviceid << 32); cmd.dw[1] = eventid; cmd.dw[2] = icid; gits_command(its, &cmd); } static inline void gits_command_inv(struct gicv3_its *its, uint32_t deviceid, uint32_t eventid) { struct gicv3_its_command cmd; /* * Ensure any caching in the redistributors associated with the specified * EventID is consistent with the LPI configuration tables. */ memset(&cmd, 0, sizeof(cmd)); cmd.dw[0] = GITS_CMD_INV | ((uint64_t)deviceid << 32); cmd.dw[1] = eventid; gits_command(its, &cmd); } static inline void gits_command_invall(struct gicv3_its *its, uint16_t icid) { struct gicv3_its_command cmd; /* * Ensure any caching associated with this ICID is consistent with LPI * configuration tables for all redistributors. */ memset(&cmd, 0, sizeof(cmd)); cmd.dw[0] = GITS_CMD_INVALL; cmd.dw[2] = icid; gits_command(its, &cmd); } static inline void gits_command_sync(struct gicv3_its *its, uint64_t rdbase) { struct gicv3_its_command cmd; KASSERT((rdbase & 0xffff) == 0); /* * Ensure all outstanding ITS operations associated with physical interrupts * for the specified redistributor (RDbase) are globally observed before * further ITS commands are executed. */ memset(&cmd, 0, sizeof(cmd)); cmd.dw[0] = GITS_CMD_SYNC; cmd.dw[2] = rdbase; gits_command(its, &cmd); } #if 0 static inline void gits_command_int(struct gicv3_its *its, uint32_t deviceid, uint32_t eventid) { struct gicv3_its_command cmd; /* * Translate the deviceid and eventid into an icid and pintid through * the device table and ITT. Mark the pintid as pending * on the redistributor. * If the interrupt is not configured the command queue stalls. */ memset(&cmd, 0, sizeof(cmd)); cmd.dw[0] = GITS_CMD_INT | ((uint64_t)deviceid << 32); cmd.dw[1] = eventid; gits_command(its, &cmd); } #endif static inline int gits_wait(struct gicv3_its *its) { u_int woff, roff; int retry = 100000; /* * The ITS command queue is empty when CWRITER and CREADR specify the * same base address offset value. */ for (retry = 1000; retry > 0; retry--) { woff = gits_read_8(its, GITS_CWRITER) & GITS_CWRITER_Offset; roff = gits_read_8(its, GITS_CREADR) & GITS_CREADR_Offset; if (woff == roff) break; delay(100); } if (retry == 0) { device_printf(its->its_gic->sc_dev, "ITS command queue timeout\n"); return ETIMEDOUT; } return 0; } static int gicv3_its_msi_alloc_lpi(struct gicv3_its *its, const struct pci_attach_args *pa) { struct pci_attach_args *new_pa; vmem_addr_t n; KASSERT(its->its_gic->sc_lpi_pool != NULL); if (vmem_alloc(its->its_gic->sc_lpi_pool, 1, VM_INSTANTFIT|VM_SLEEP, &n) != 0) return -1; KASSERT(its->its_pa[n] == NULL); new_pa = kmem_alloc(sizeof(*new_pa), KM_SLEEP); memcpy(new_pa, pa, sizeof(*new_pa)); its->its_pa[n] = new_pa; return n + its->its_pic->pic_irqbase; } static void gicv3_its_msi_free_lpi(struct gicv3_its *its, int lpi) { struct pci_attach_args *pa; KASSERT(its->its_gic->sc_lpi_pool != NULL); KASSERT(lpi >= its->its_pic->pic_irqbase); pa = its->its_pa[lpi - its->its_pic->pic_irqbase]; its->its_pa[lpi - its->its_pic->pic_irqbase] = NULL; kmem_free(pa, sizeof(*pa)); vmem_free(its->its_gic->sc_lpi_pool, lpi - its->its_pic->pic_irqbase, 1); } static uint32_t gicv3_its_devid(pci_chipset_tag_t pc, pcitag_t tag) { uint32_t devid; int b, d, f; pci_decompose_tag(pc, tag, &b, &d, &f); devid = (b << 8) | (d << 3) | f; return pci_get_devid(pc, devid); } static int gicv3_its_device_map(struct gicv3_its *its, uint32_t devid, u_int count) { struct gicv3_its_device *dev; u_int vectors; vectors = MAX(2, count); while (!powerof2(vectors)) vectors++; const uint64_t typer = gits_read_8(its, GITS_TYPER); const u_int itt_entry_size = __SHIFTOUT(typer, GITS_TYPER_ITT_entry_size) + 1; const u_int itt_size = roundup(vectors * itt_entry_size, GITS_ITT_ALIGN); LIST_FOREACH(dev, &its->its_devices, dev_list) if (dev->dev_id == devid) { return itt_size <= dev->dev_size ? 0 : EEXIST; } dev = kmem_alloc(sizeof(*dev), KM_SLEEP); dev->dev_id = devid; dev->dev_size = itt_size; gicv3_dma_alloc(its->its_gic, &dev->dev_itt, itt_size, GITS_ITT_ALIGN); LIST_INSERT_HEAD(&its->its_devices, dev, dev_list); /* * Map the device to the ITT */ const u_int id_bits = __SHIFTOUT(typer, GITS_TYPER_ID_bits) + 1; mutex_enter(its->its_lock); gits_command_mapd(its, devid, dev->dev_itt.segs[0].ds_addr, id_bits - 1, true); gits_wait(its); mutex_exit(its->its_lock); return 0; } static void gicv3_its_msi_enable(struct gicv3_its *its, int lpi, int count) { const struct pci_attach_args *pa = its->its_pa[lpi - its->its_pic->pic_irqbase]; pci_chipset_tag_t pc = pa->pa_pc; pcitag_t tag = pa->pa_tag; pcireg_t ctl; int off; if (!pci_get_capability(pc, tag, PCI_CAP_MSI, &off, NULL)) panic("gicv3_its_msi_enable: device is not MSI-capable"); ctl = pci_conf_read(pc, tag, off + PCI_MSI_CTL); ctl &= ~PCI_MSI_CTL_MME_MASK; ctl |= __SHIFTIN(ilog2(count), PCI_MSI_CTL_MME_MASK); pci_conf_write(pc, tag, off + PCI_MSI_CTL, ctl); const uint64_t addr = its->its_base + GITS_TRANSLATER; ctl = pci_conf_read(pc, tag, off + PCI_MSI_CTL); if (ctl & PCI_MSI_CTL_64BIT_ADDR) { pci_conf_write(pc, tag, off + PCI_MSI_MADDR64_LO, addr & 0xffffffff); pci_conf_write(pc, tag, off + PCI_MSI_MADDR64_HI, (addr >> 32) & 0xffffffff); pci_conf_write(pc, tag, off + PCI_MSI_MDATA64, lpi - its->its_pic->pic_irqbase); } else { KASSERT((addr >> 32) == 0); pci_conf_write(pc, tag, off + PCI_MSI_MADDR, addr & 0xffffffff); pci_conf_write(pc, tag, off + PCI_MSI_MDATA, lpi - its->its_pic->pic_irqbase); } ctl |= PCI_MSI_CTL_MSI_ENABLE; pci_conf_write(pc, tag, off + PCI_MSI_CTL, ctl); } static void gicv3_its_msi_disable(struct gicv3_its *its, int lpi) { const struct pci_attach_args *pa = its->its_pa[lpi - its->its_pic->pic_irqbase]; pci_chipset_tag_t pc = pa->pa_pc; pcitag_t tag = pa->pa_tag; pcireg_t ctl; int off; if (!pci_get_capability(pc, tag, PCI_CAP_MSI, &off, NULL)) panic("gicv3_its_msi_enable: device is not MSI-capable"); ctl = pci_conf_read(pc, tag, off + PCI_MSI_CTL); ctl &= ~PCI_MSI_CTL_MSI_ENABLE; pci_conf_write(pc, tag, off + PCI_MSI_CTL, ctl); } static void gicv3_its_msix_enable(struct gicv3_its *its, int lpi, int msix_vec, bus_space_tag_t bst, bus_space_handle_t bsh) { const struct pci_attach_args *pa = its->its_pa[lpi - its->its_pic->pic_irqbase]; pci_chipset_tag_t pc = pa->pa_pc; pcitag_t tag = pa->pa_tag; pcireg_t ctl; uint32_t val; int off; if (!pci_get_capability(pc, tag, PCI_CAP_MSIX, &off, NULL)) panic("gicv3_its_msix_enable: device is not MSI-X-capable"); const uint64_t addr = its->its_base + GITS_TRANSLATER; const uint64_t entry_base = PCI_MSIX_TABLE_ENTRY_SIZE * msix_vec; bus_space_write_4(bst, bsh, entry_base + PCI_MSIX_TABLE_ENTRY_ADDR_LO, (uint32_t)addr); bus_space_write_4(bst, bsh, entry_base + PCI_MSIX_TABLE_ENTRY_ADDR_HI, (uint32_t)(addr >> 32)); bus_space_write_4(bst, bsh, entry_base + PCI_MSIX_TABLE_ENTRY_DATA, lpi - its->its_pic->pic_irqbase); val = bus_space_read_4(bst, bsh, entry_base + PCI_MSIX_TABLE_ENTRY_VECTCTL); val &= ~PCI_MSIX_VECTCTL_MASK; bus_space_write_4(bst, bsh, entry_base + PCI_MSIX_TABLE_ENTRY_VECTCTL, val); ctl = pci_conf_read(pc, tag, off + PCI_MSIX_CTL); ctl |= PCI_MSIX_CTL_ENABLE; pci_conf_write(pc, tag, off + PCI_MSIX_CTL, ctl); } static void gicv3_its_msix_disable(struct gicv3_its *its, int lpi) { const struct pci_attach_args *pa = its->its_pa[lpi - its->its_pic->pic_irqbase]; pci_chipset_tag_t pc = pa->pa_pc; pcitag_t tag = pa->pa_tag; pcireg_t ctl; int off; if (!pci_get_capability(pc, tag, PCI_CAP_MSIX, &off, NULL)) panic("gicv3_its_msix_disable: device is not MSI-X-capable"); ctl = pci_conf_read(pc, tag, off + PCI_MSIX_CTL); ctl &= ~PCI_MSIX_CTL_ENABLE; pci_conf_write(pc, tag, off + PCI_MSIX_CTL, ctl); } static pci_intr_handle_t * gicv3_its_msi_alloc(struct arm_pci_msi *msi, int *count, const struct pci_attach_args *pa, bool exact) { struct gicv3_its * const its = msi->msi_priv; struct cpu_info * const ci = cpu_lookup(0); pci_intr_handle_t *vectors; int n, off; if (!pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &off, NULL)) return NULL; const uint64_t typer = gits_read_8(its, GITS_TYPER); const u_int id_bits = __SHIFTOUT(typer, GITS_TYPER_ID_bits) + 1; if (*count == 0 || *count > (1 << id_bits)) return NULL; const uint32_t devid = gicv3_its_devid(pa->pa_pc, pa->pa_tag); if (gicv3_its_device_map(its, devid, *count) != 0) return NULL; vectors = kmem_alloc(sizeof(*vectors) * *count, KM_SLEEP); mutex_enter(its->its_lock); for (n = 0; n < *count; n++) { const int lpi = gicv3_its_msi_alloc_lpi(its, pa); KASSERT(lpi >= 0); vectors[n] = ARM_PCI_INTR_MSI | __SHIFTIN(lpi, ARM_PCI_INTR_IRQ) | __SHIFTIN(n, ARM_PCI_INTR_MSI_VEC) | __SHIFTIN(msi->msi_id, ARM_PCI_INTR_FRAME); if (n == 0) gicv3_its_msi_enable(its, lpi, *count); /* * Record devid and target PE */ its->its_devid[lpi - its->its_pic->pic_irqbase] = devid; its->its_targets[lpi - its->its_pic->pic_irqbase] = ci; /* * Map event */ gits_command_mapti(its, devid, lpi - its->its_pic->pic_irqbase, lpi, cpu_index(ci)); gits_command_sync(its, its->its_rdbase[cpu_index(ci)]); } gits_wait(its); mutex_exit(its->its_lock); return vectors; } static pci_intr_handle_t * gicv3_its_msix_alloc(struct arm_pci_msi *msi, u_int *table_indexes, int *count, const struct pci_attach_args *pa, bool exact) { struct gicv3_its * const its = msi->msi_priv; struct cpu_info *ci = cpu_lookup(0); pci_intr_handle_t *vectors; bus_space_tag_t bst; bus_space_handle_t bsh; bus_size_t bsz; uint32_t table_offset, table_size; int n, off, bar, error; pcireg_t tbl; if (!pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &off, NULL)) return NULL; const uint64_t typer = gits_read_8(its, GITS_TYPER); const u_int id_bits = __SHIFTOUT(typer, GITS_TYPER_ID_bits) + 1; if (*count == 0 || *count > (1 << id_bits)) return NULL; tbl = pci_conf_read(pa->pa_pc, pa->pa_tag, off + PCI_MSIX_TBLOFFSET); bar = PCI_BAR0 + (4 * (tbl & PCI_MSIX_TBLBIR_MASK)); table_offset = tbl & PCI_MSIX_TBLOFFSET_MASK; table_size = pci_msix_count(pa->pa_pc, pa->pa_tag) * PCI_MSIX_TABLE_ENTRY_SIZE; if (table_size == 0) return NULL; error = pci_mapreg_submap(pa, bar, pci_mapreg_type(pa->pa_pc, pa->pa_tag, bar), BUS_SPACE_MAP_LINEAR, roundup(table_size, PAGE_SIZE), table_offset, &bst, &bsh, NULL, &bsz); if (error) return NULL; const uint32_t devid = gicv3_its_devid(pa->pa_pc, pa->pa_tag); if (gicv3_its_device_map(its, devid, *count) != 0) { bus_space_unmap(bst, bsh, bsz); return NULL; } vectors = kmem_alloc(sizeof(*vectors) * *count, KM_SLEEP); mutex_enter(its->its_lock); for (n = 0; n < *count; n++) { const int lpi = gicv3_its_msi_alloc_lpi(its, pa); KASSERT(lpi >= 0); const int msix_vec = table_indexes ? table_indexes[n] : n; vectors[msix_vec] = ARM_PCI_INTR_MSIX | __SHIFTIN(lpi, ARM_PCI_INTR_IRQ) | __SHIFTIN(msix_vec, ARM_PCI_INTR_MSI_VEC) | __SHIFTIN(msi->msi_id, ARM_PCI_INTR_FRAME); gicv3_its_msix_enable(its, lpi, msix_vec, bst, bsh); /* * Record devid and target PE */ its->its_devid[lpi - its->its_pic->pic_irqbase] = devid; its->its_targets[lpi - its->its_pic->pic_irqbase] = ci; /* * Map event */ gits_command_mapti(its, devid, lpi - its->its_pic->pic_irqbase, lpi, cpu_index(ci)); gits_command_sync(its, its->its_rdbase[cpu_index(ci)]); } gits_wait(its); mutex_exit(its->its_lock); bus_space_unmap(bst, bsh, bsz); return vectors; } static void * gicv3_its_msi_intr_establish(struct arm_pci_msi *msi, pci_intr_handle_t ih, int ipl, int (*func)(void *), void *arg, const char *xname) { struct gicv3_its * const its = msi->msi_priv; void *intrh; const int lpi = __SHIFTOUT(ih, ARM_PCI_INTR_IRQ); const int mpsafe = (ih & ARM_PCI_INTR_MPSAFE) ? IST_MPSAFE : 0; intrh = pic_establish_intr(its->its_pic, lpi - its->its_pic->pic_irqbase, ipl, IST_EDGE | mpsafe, func, arg, xname); if (intrh == NULL) return NULL; /* Invalidate LPI configuration tables */ KASSERT(its->its_pa[lpi - its->its_pic->pic_irqbase] != NULL); const uint32_t devid = its->its_devid[lpi - its->its_pic->pic_irqbase]; gits_command_inv(its, devid, lpi - its->its_pic->pic_irqbase); return intrh; } static void gicv3_its_msi_intr_release(struct arm_pci_msi *msi, pci_intr_handle_t *pih, int count) { struct gicv3_its * const its = msi->msi_priv; int n; for (n = 0; n < count; n++) { const int lpi = __SHIFTOUT(pih[n], ARM_PCI_INTR_IRQ); KASSERT(lpi >= its->its_pic->pic_irqbase); if (pih[n] & ARM_PCI_INTR_MSIX) gicv3_its_msix_disable(its, lpi); if (pih[n] & ARM_PCI_INTR_MSI) gicv3_its_msi_disable(its, lpi); gicv3_its_msi_free_lpi(its, lpi); its->its_targets[lpi - its->its_pic->pic_irqbase] = NULL; its->its_devid[lpi - its->its_pic->pic_irqbase] = 0; struct intrsource * const is = its->its_pic->pic_sources[lpi - its->its_pic->pic_irqbase]; if (is != NULL) pic_disestablish_source(is); } } static void gicv3_its_command_init(struct gicv3_softc *sc, struct gicv3_its *its) { uint64_t cbaser; gicv3_dma_alloc(sc, &its->its_cmd, GITS_COMMANDS_SIZE, GITS_COMMANDS_ALIGN); KASSERT((gits_read_4(its, GITS_CTLR) & GITS_CTLR_Enabled) == 0); KASSERT((gits_read_4(its, GITS_CTLR) & GITS_CTLR_Quiescent) != 0); cbaser = its->its_cmd.segs[0].ds_addr; cbaser |= __SHIFTIN(GITS_Cache_NORMAL_NC, GITS_CBASER_InnerCache); cbaser |= __SHIFTIN(GITS_Shareability_NS, GITS_CBASER_Shareability); cbaser |= __SHIFTIN((its->its_cmd.len / 4096) - 1, GITS_CBASER_Size); cbaser |= GITS_CBASER_Valid; gits_write_8(its, GITS_CWRITER, 0); gits_write_8(its, GITS_CBASER, cbaser); } static void gicv3_its_table_params(struct gicv3_softc *sc, struct gicv3_its *its, u_int *devbits, u_int *innercache, u_int *share) { const uint64_t typer = gits_read_8(its, GITS_TYPER); const uint32_t iidr = gits_read_4(its, GITS_IIDR); /* Default values */ *devbits = __SHIFTOUT(typer, GITS_TYPER_Devbits) + 1; *innercache = GITS_Cache_NORMAL_WA_WB; *share = GITS_Shareability_IS; /* Cavium ThunderX errata */ if ((iidr & GITS_IIDR_CAVIUM_ERRATA_MASK) == GITS_IIDR_CAVIUM_ERRATA_VALUE) { *devbits = 20; /* 8Mb */ *innercache = GITS_Cache_DEVICE_nGnRnE; aprint_normal_dev(sc->sc_dev, "Cavium ThunderX errata detected\n"); } } static void gicv3_its_table_init(struct gicv3_softc *sc, struct gicv3_its *its) { u_int table_size, page_size, table_align; u_int devbits, innercache, share; const char *table_type; uint64_t baser; int tab; gicv3_its_table_params(sc, its, &devbits, &innercache, &share); for (tab = 0; tab < 8; tab++) { baser = gits_read_8(its, GITS_BASERn(tab)); const u_int entry_size = __SHIFTOUT(baser, GITS_BASER_Entry_Size) + 1; switch (__SHIFTOUT(baser, GITS_BASER_Page_Size)) { case GITS_Page_Size_4KB: page_size = 4096; table_align = 4096; break; case GITS_Page_Size_16KB: page_size = 16384; table_align = 16384; break; case GITS_Page_Size_64KB: default: page_size = 65536; table_align = 65536; break; } switch (__SHIFTOUT(baser, GITS_BASER_Type)) { case GITS_Type_Devices: /* * Table size scales with the width of the DeviceID. */ table_size = roundup(entry_size * (1 << devbits), page_size); table_type = "Devices"; break; case GITS_Type_InterruptCollections: /* * Allocate space for one interrupt collection per CPU. */ table_size = roundup(entry_size * ncpu, page_size); table_type = "Collections"; break; default: table_size = 0; break; } if (table_size == 0) continue; gicv3_dma_alloc(sc, &its->its_tab[tab], table_size, table_align); baser &= ~GITS_BASER_Size; baser |= __SHIFTIN(table_size / page_size - 1, GITS_BASER_Size); baser &= ~GITS_BASER_Physical_Address; baser |= its->its_tab[tab].segs[0].ds_addr; baser &= ~GITS_BASER_InnerCache; baser |= __SHIFTIN(innercache, GITS_BASER_InnerCache); baser &= ~GITS_BASER_Shareability; baser |= __SHIFTIN(share, GITS_BASER_Shareability); baser |= GITS_BASER_Valid; gits_write_8(its, GITS_BASERn(tab), baser); baser = gits_read_8(its, GITS_BASERn(tab)); if (__SHIFTOUT(baser, GITS_BASER_Shareability) == GITS_Shareability_NS) { baser &= ~GITS_BASER_InnerCache; baser |= __SHIFTIN(GITS_Cache_NORMAL_NC, GITS_BASER_InnerCache); gits_write_8(its, GITS_BASERn(tab), baser); } baser = gits_read_8(its, GITS_BASERn(tab)); aprint_normal_dev(sc->sc_dev, "ITS [#%d] %s table @ %#lx/%#x, %s, %s\n", tab, table_type, its->its_tab[tab].segs[0].ds_addr, table_size, gits_cache_type[__SHIFTOUT(baser, GITS_BASER_InnerCache)], gits_share_type[__SHIFTOUT(baser, GITS_BASER_Shareability)]); } } static void gicv3_its_enable(struct gicv3_softc *sc, struct gicv3_its *its) { uint32_t ctlr; ctlr = gits_read_4(its, GITS_CTLR); ctlr |= GITS_CTLR_Enabled; gits_write_4(its, GITS_CTLR, ctlr); } static void gicv3_its_cpu_init(void *priv, struct cpu_info *ci) { struct gicv3_its * const its = priv; struct gicv3_softc * const sc = its->its_gic; uint64_t rdbase; size_t irq; const uint64_t typer = bus_space_read_8(sc->sc_bst, its->its_bsh, GITS_TYPER); if (typer & GITS_TYPER_PTA) { void *va = bus_space_vaddr(sc->sc_bst, sc->sc_bsh_r[ci->ci_gic_redist]); rdbase = vtophys((vaddr_t)va); } else { rdbase = (uint64_t)sc->sc_processor_id[cpu_index(ci)] << 16; } its->its_rdbase[cpu_index(ci)] = rdbase; /* * Map collection ID of this CPU's index to this CPU's redistributor. */ mutex_enter(its->its_lock); gits_command_mapc(its, cpu_index(ci), rdbase, true); gits_command_invall(its, cpu_index(ci)); gits_wait(its); /* * Update routing for LPIs targetting this CPU */ for (irq = 0; irq < its->its_pic->pic_maxsources; irq++) { if (its->its_targets[irq] != ci) continue; KASSERT(its->its_pa[irq] != NULL); const uint32_t devid = its->its_devid[irq]; gits_command_movi(its, devid, irq, cpu_index(ci)); gits_command_sync(its, its->its_rdbase[cpu_index(ci)]); } gits_wait(its); mutex_exit(its->its_lock); its->its_cpuonline[cpu_index(ci)] = true; } static void gicv3_its_get_affinity(void *priv, size_t irq, kcpuset_t *affinity) { struct gicv3_its * const its = priv; struct cpu_info *ci; ci = its->its_targets[irq]; if (ci) kcpuset_set(affinity, cpu_index(ci)); } static int gicv3_its_set_affinity(void *priv, size_t irq, const kcpuset_t *affinity) { struct gicv3_its * const its = priv; const struct pci_attach_args *pa; struct cpu_info *ci; const int set = kcpuset_countset(affinity); if (set != 1) return EINVAL; pa = its->its_pa[irq]; if (pa == NULL) return EPASSTHROUGH; ci = cpu_lookup(kcpuset_ffs(affinity) - 1); its->its_targets[irq] = ci; if (its->its_cpuonline[cpu_index(ci)] == true) { const uint32_t devid = gicv3_its_devid(pa->pa_pc, pa->pa_tag); mutex_enter(its->its_lock); gits_command_movi(its, devid, irq, cpu_index(ci)); gits_command_sync(its, its->its_rdbase[cpu_index(ci)]); mutex_exit(its->its_lock); } return 0; } int gicv3_its_init(struct gicv3_softc *sc, bus_space_handle_t bsh, uint64_t its_base, uint32_t its_id) { struct gicv3_its *its; struct arm_pci_msi *msi; const uint64_t typer = bus_space_read_8(sc->sc_bst, bsh, GITS_TYPER); if ((typer & GITS_TYPER_Physical) == 0) return ENXIO; its = kmem_zalloc(sizeof(*its), KM_SLEEP); its->its_id = its_id; its->its_bst = sc->sc_bst; its->its_bsh = bsh; its->its_dmat = sc->sc_dmat; its->its_base = its_base; its->its_pic = &sc->sc_lpi; snprintf(its->its_pic->pic_name, sizeof(its->its_pic->pic_name), "gicv3-its"); KASSERT(its->its_pic->pic_maxsources > 0); its->its_pa = kmem_zalloc(sizeof(struct pci_attach_args *) * its->its_pic->pic_maxsources, KM_SLEEP); its->its_targets = kmem_zalloc(sizeof(struct cpu_info *) * its->its_pic->pic_maxsources, KM_SLEEP); its->its_devid = kmem_zalloc(sizeof(uint32_t) * its->its_pic->pic_maxsources, KM_SLEEP); its->its_gic = sc; its->its_rdbase = kmem_zalloc(sizeof(*its->its_rdbase) * ncpu, KM_SLEEP); its->its_cpuonline = kmem_zalloc(sizeof(*its->its_cpuonline) * ncpu, KM_SLEEP); its->its_cb.cpu_init = gicv3_its_cpu_init; its->its_cb.get_affinity = gicv3_its_get_affinity; its->its_cb.set_affinity = gicv3_its_set_affinity; its->its_cb.priv = its; LIST_INIT(&its->its_devices); LIST_INSERT_HEAD(&sc->sc_lpi_callbacks, &its->its_cb, list); its->its_lock = mutex_obj_alloc(MUTEX_SPIN, IPL_NONE); gicv3_its_command_init(sc, its); gicv3_its_table_init(sc, its); gicv3_its_enable(sc, its); gicv3_its_cpu_init(its, curcpu()); msi = &its->its_msi; msi->msi_id = its_id; msi->msi_dev = sc->sc_dev; msi->msi_priv = its; msi->msi_alloc = gicv3_its_msi_alloc; msi->msix_alloc = gicv3_its_msix_alloc; msi->msi_intr_establish = gicv3_its_msi_intr_establish; msi->msi_intr_release = gicv3_its_msi_intr_release; return arm_pci_msi_add(msi); }