/* $NetBSD: gicv3.c,v 1.54 2022/06/26 11:14:36 jmcneill Exp $ */ /*- * Copyright (c) 2018 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_multiprocessor.h" #define _INTR_PRIVATE #include __KERNEL_RCSID(0, "$NetBSD: gicv3.c,v 1.54 2022/06/26 11:14:36 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PICTOSOFTC(pic) \ container_of(pic, struct gicv3_softc, sc_pic) #define LPITOSOFTC(lpi) \ container_of(lpi, struct gicv3_softc, sc_lpi) #define IPL_TO_PRIORITY(sc, ipl) (((0xff - (ipl)) << (sc)->sc_priority_shift) & 0xff) #define IPL_TO_PMR(sc, ipl) (((0xff - (ipl)) << (sc)->sc_pmr_shift) & 0xff) #define IPL_TO_HWPL(ipl) ((ipl) >= IPL_VM ? (ipl) : IPL_NONE) #define GIC_SUPPORTS_1OFN(sc) (((sc)->sc_gicd_typer & GICD_TYPER_No1N) == 0) #define GIC_PRIO_SHIFT_NS 4 #define GIC_PRIO_SHIFT_S 3 /* * Set to true if you want to use 1 of N interrupt distribution for SPIs * when available. Disabled by default because it causes issues with the * USB stack. */ bool gicv3_use_1ofn = false; static struct gicv3_softc *gicv3_softc; static inline uint32_t gicd_read_4(struct gicv3_softc *sc, bus_size_t reg) { return bus_space_read_4(sc->sc_bst, sc->sc_bsh_d, reg); } static inline void gicd_write_4(struct gicv3_softc *sc, bus_size_t reg, uint32_t val) { bus_space_write_4(sc->sc_bst, sc->sc_bsh_d, reg, val); } #ifdef MULTIPROCESSOR static inline uint64_t gicd_read_8(struct gicv3_softc *sc, bus_size_t reg) { return bus_space_read_8(sc->sc_bst, sc->sc_bsh_d, reg); } #endif static inline void gicd_write_8(struct gicv3_softc *sc, bus_size_t reg, uint64_t val) { bus_space_write_8(sc->sc_bst, sc->sc_bsh_d, reg, val); } static inline uint32_t gicr_read_4(struct gicv3_softc *sc, u_int index, bus_size_t reg) { KASSERT(index < sc->sc_bsh_r_count); return bus_space_read_4(sc->sc_bst, sc->sc_bsh_r[index], reg); } static inline void gicr_write_4(struct gicv3_softc *sc, u_int index, bus_size_t reg, uint32_t val) { KASSERT(index < sc->sc_bsh_r_count); bus_space_write_4(sc->sc_bst, sc->sc_bsh_r[index], reg, val); } static inline uint64_t gicr_read_8(struct gicv3_softc *sc, u_int index, bus_size_t reg) { KASSERT(index < sc->sc_bsh_r_count); return bus_space_read_8(sc->sc_bst, sc->sc_bsh_r[index], reg); } static inline void gicr_write_8(struct gicv3_softc *sc, u_int index, bus_size_t reg, uint64_t val) { KASSERT(index < sc->sc_bsh_r_count); bus_space_write_8(sc->sc_bst, sc->sc_bsh_r[index], reg, val); } static void gicv3_unblock_irqs(struct pic_softc *pic, size_t irqbase, uint32_t mask) { struct gicv3_softc * const sc = PICTOSOFTC(pic); struct cpu_info * const ci = curcpu(); const u_int group = irqbase / 32; if (group == 0) { atomic_or_32(&sc->sc_enabled_sgippi, mask); gicr_write_4(sc, ci->ci_gic_redist, GICR_ISENABLER0, mask); while (gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR) & GICR_CTLR_RWP) ; } else { gicd_write_4(sc, GICD_ISENABLERn(group), mask); while (gicd_read_4(sc, GICD_CTRL) & GICD_CTRL_RWP) ; } } static void gicv3_block_irqs(struct pic_softc *pic, size_t irqbase, uint32_t mask) { struct gicv3_softc * const sc = PICTOSOFTC(pic); struct cpu_info * const ci = curcpu(); const u_int group = irqbase / 32; if (group == 0) { atomic_and_32(&sc->sc_enabled_sgippi, ~mask); gicr_write_4(sc, ci->ci_gic_redist, GICR_ICENABLER0, mask); while (gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR) & GICR_CTLR_RWP) ; } else { gicd_write_4(sc, GICD_ICENABLERn(group), mask); while (gicd_read_4(sc, GICD_CTRL) & GICD_CTRL_RWP) ; } } static void gicv3_establish_irq(struct pic_softc *pic, struct intrsource *is) { struct gicv3_softc * const sc = PICTOSOFTC(pic); const u_int group = is->is_irq / 32; uint32_t ipriority, icfg; uint64_t irouter; u_int n; const u_int ipriority_val = IPL_TO_PRIORITY(sc, is->is_ipl); const u_int ipriority_shift = (is->is_irq & 0x3) * 8; const u_int icfg_shift = (is->is_irq & 0xf) * 2; if (group == 0) { /* SGIs and PPIs are per-CPU and always MP-safe */ is->is_mpsafe = true; is->is_percpu = true; /* Update interrupt configuration and priority on all redistributors */ for (n = 0; n < sc->sc_bsh_r_count; n++) { icfg = gicr_read_4(sc, n, GICR_ICFGRn(is->is_irq / 16)); if (is->is_type == IST_LEVEL) icfg &= ~(0x2 << icfg_shift); if (is->is_type == IST_EDGE) icfg |= (0x2 << icfg_shift); gicr_write_4(sc, n, GICR_ICFGRn(is->is_irq / 16), icfg); ipriority = gicr_read_4(sc, n, GICR_IPRIORITYRn(is->is_irq / 4)); ipriority &= ~(0xffU << ipriority_shift); ipriority |= (ipriority_val << ipriority_shift); gicr_write_4(sc, n, GICR_IPRIORITYRn(is->is_irq / 4), ipriority); } } else { /* * If 1 of N SPI routing is supported, route MP-safe interrupts to all * participating PEs. Otherwise, just route to the primary PE. */ if (is->is_mpsafe && GIC_SUPPORTS_1OFN(sc) && gicv3_use_1ofn) { irouter = GICD_IROUTER_Interrupt_Routing_mode; } else { irouter = sc->sc_irouter[0]; } gicd_write_8(sc, GICD_IROUTER(is->is_irq), irouter); /* Update interrupt configuration */ icfg = gicd_read_4(sc, GICD_ICFGRn(is->is_irq / 16)); if (is->is_type == IST_LEVEL) icfg &= ~(0x2 << icfg_shift); if (is->is_type == IST_EDGE) icfg |= (0x2 << icfg_shift); gicd_write_4(sc, GICD_ICFGRn(is->is_irq / 16), icfg); /* Update interrupt priority */ ipriority = gicd_read_4(sc, GICD_IPRIORITYRn(is->is_irq / 4)); ipriority &= ~(0xffU << ipriority_shift); ipriority |= (ipriority_val << ipriority_shift); gicd_write_4(sc, GICD_IPRIORITYRn(is->is_irq / 4), ipriority); } } static void gicv3_set_priority(struct pic_softc *pic, int ipl) { struct gicv3_softc * const sc = PICTOSOFTC(pic); struct cpu_info * const ci = curcpu(); const int hwpl = IPL_TO_HWPL(ipl); while (hwpl < ci->ci_hwpl) { /* Lowering priority mask */ ci->ci_hwpl = hwpl; __insn_barrier(); icc_pmr_write(IPL_TO_PMR(sc, hwpl)); } __insn_barrier(); ci->ci_cpl = ipl; } static void gicv3_dist_enable(struct gicv3_softc *sc) { uint32_t gicd_ctrl; u_int n; /* Disable the distributor */ gicd_ctrl = gicd_read_4(sc, GICD_CTRL); gicd_ctrl &= ~(GICD_CTRL_EnableGrp1A | GICD_CTRL_ARE_NS); gicd_write_4(sc, GICD_CTRL, gicd_ctrl); /* Wait for register write to complete */ while (gicd_read_4(sc, GICD_CTRL) & GICD_CTRL_RWP) ; /* Clear all INTID enable bits */ for (n = 32; n < sc->sc_pic.pic_maxsources; n += 32) gicd_write_4(sc, GICD_ICENABLERn(n / 32), ~0); /* Set default priorities to lowest */ for (n = 32; n < sc->sc_pic.pic_maxsources; n += 4) gicd_write_4(sc, GICD_IPRIORITYRn(n / 4), ~0); /* Set all interrupts to G1NS */ for (n = 32; n < sc->sc_pic.pic_maxsources; n += 32) { gicd_write_4(sc, GICD_IGROUPRn(n / 32), ~0); gicd_write_4(sc, GICD_IGRPMODRn(n / 32), 0); } /* Set all interrupts level-sensitive by default */ for (n = 32; n < sc->sc_pic.pic_maxsources; n += 16) gicd_write_4(sc, GICD_ICFGRn(n / 16), 0); /* Wait for register writes to complete */ while (gicd_read_4(sc, GICD_CTRL) & GICD_CTRL_RWP) ; /* Enable Affinity routing and G1NS interrupts */ gicd_ctrl = GICD_CTRL_EnableGrp1A | GICD_CTRL_ARE_NS; gicd_write_4(sc, GICD_CTRL, gicd_ctrl); } static void gicv3_redist_enable(struct gicv3_softc *sc, struct cpu_info *ci) { uint32_t icfg; u_int n, o; /* Clear INTID enable bits */ gicr_write_4(sc, ci->ci_gic_redist, GICR_ICENABLER0, ~0); /* Wait for register write to complete */ while (gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR) & GICR_CTLR_RWP) ; /* Set default priorities */ for (n = 0; n < 32; n += 4) { uint32_t priority = 0; size_t byte_shift = 0; for (o = 0; o < 4; o++, byte_shift += 8) { struct intrsource * const is = sc->sc_pic.pic_sources[n + o]; if (is == NULL) priority |= (0xffU << byte_shift); else { const u_int ipriority_val = IPL_TO_PRIORITY(sc, is->is_ipl); priority |= ipriority_val << byte_shift; } } gicr_write_4(sc, ci->ci_gic_redist, GICR_IPRIORITYRn(n / 4), priority); } /* Set all interrupts to G1NS */ gicr_write_4(sc, ci->ci_gic_redist, GICR_IGROUPR0, ~0); gicr_write_4(sc, ci->ci_gic_redist, GICR_IGRPMODR0, 0); /* Restore PPI configs */ for (n = 0, icfg = 0; n < 16; n++) { struct intrsource * const is = sc->sc_pic.pic_sources[16 + n]; if (is != NULL && is->is_type == IST_EDGE) icfg |= (0x2 << (n * 2)); } gicr_write_4(sc, ci->ci_gic_redist, GICR_ICFGRn(1), icfg); /* Restore current enable bits */ gicr_write_4(sc, ci->ci_gic_redist, GICR_ISENABLER0, sc->sc_enabled_sgippi); /* Wait for register write to complete */ while (gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR) & GICR_CTLR_RWP) ; } static uint64_t gicv3_cpu_identity(void) { u_int aff3, aff2, aff1, aff0; const register_t mpidr = cpu_mpidr_aff_read(); aff0 = __SHIFTOUT(mpidr, MPIDR_AFF0); aff1 = __SHIFTOUT(mpidr, MPIDR_AFF1); aff2 = __SHIFTOUT(mpidr, MPIDR_AFF2); aff3 = __SHIFTOUT(mpidr, MPIDR_AFF3); return __SHIFTIN(aff0, GICR_TYPER_Affinity_Value_Aff0) | __SHIFTIN(aff1, GICR_TYPER_Affinity_Value_Aff1) | __SHIFTIN(aff2, GICR_TYPER_Affinity_Value_Aff2) | __SHIFTIN(aff3, GICR_TYPER_Affinity_Value_Aff3); } static u_int gicv3_find_redist(struct gicv3_softc *sc) { uint64_t gicr_typer; u_int n; const uint64_t cpu_identity = gicv3_cpu_identity(); for (n = 0; n < sc->sc_bsh_r_count; n++) { gicr_typer = gicr_read_8(sc, n, GICR_TYPER); if ((gicr_typer & GICR_TYPER_Affinity_Value) == cpu_identity) return n; } const u_int aff0 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff0); const u_int aff1 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff1); const u_int aff2 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff2); const u_int aff3 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff3); panic("%s: could not find GICv3 redistributor for cpu %d.%d.%d.%d", cpu_name(curcpu()), aff3, aff2, aff1, aff0); } static uint64_t gicv3_sgir(struct gicv3_softc *sc) { const uint64_t cpu_identity = gicv3_cpu_identity(); const u_int aff0 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff0); const u_int aff1 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff1); const u_int aff2 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff2); const u_int aff3 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff3); return __SHIFTIN(__BIT(aff0), ICC_SGIR_EL1_TargetList) | __SHIFTIN(aff1, ICC_SGIR_EL1_Aff1) | __SHIFTIN(aff2, ICC_SGIR_EL1_Aff2) | __SHIFTIN(aff3, ICC_SGIR_EL1_Aff3); } static void gicv3_cpu_init(struct pic_softc *pic, struct cpu_info *ci) { struct gicv3_softc * const sc = PICTOSOFTC(pic); uint32_t icc_sre, icc_ctlr, gicr_waker; evcnt_attach_dynamic(&ci->ci_intr_preempt, EVCNT_TYPE_MISC, NULL, ci->ci_cpuname, "intr preempt"); ci->ci_gic_redist = gicv3_find_redist(sc); ci->ci_gic_sgir = gicv3_sgir(sc); /* Enable System register access and disable IRQ/FIQ bypass */ icc_sre = ICC_SRE_EL1_SRE | ICC_SRE_EL1_DFB | ICC_SRE_EL1_DIB; icc_sre_write(icc_sre); /* Mark the connected PE as being awake */ gicr_waker = gicr_read_4(sc, ci->ci_gic_redist, GICR_WAKER); gicr_waker &= ~GICR_WAKER_ProcessorSleep; gicr_write_4(sc, ci->ci_gic_redist, GICR_WAKER, gicr_waker); while (gicr_read_4(sc, ci->ci_gic_redist, GICR_WAKER) & GICR_WAKER_ChildrenAsleep) ; /* Set initial priority mask */ ci->ci_hwpl = IPL_HIGH; icc_pmr_write(IPL_TO_PMR(sc, IPL_HIGH)); /* Set the binary point field to the minimum value */ icc_bpr1_write(0); /* Enable group 1 interrupt signaling */ icc_igrpen1_write(ICC_IGRPEN_EL1_Enable); /* Set EOI mode */ icc_ctlr = icc_ctlr_read(); icc_ctlr &= ~ICC_CTLR_EL1_EOImode; icc_ctlr_write(icc_ctlr); /* Enable redistributor */ gicv3_redist_enable(sc, ci); /* Allow IRQ exceptions */ ENABLE_INTERRUPT(); } #ifdef MULTIPROCESSOR static void gicv3_ipi_send(struct pic_softc *pic, const kcpuset_t *kcp, u_long ipi) { struct cpu_info *ci; uint64_t sgir; sgir = __SHIFTIN(ipi, ICC_SGIR_EL1_INTID); if (kcp == NULL) { /* Interrupts routed to all PEs, excluding "self" */ if (ncpu == 1) return; sgir |= ICC_SGIR_EL1_IRM; } else { /* Interrupt to exactly one PE */ ci = cpu_lookup(kcpuset_ffs(kcp) - 1); if (ci == curcpu()) return; sgir |= ci->ci_gic_sgir; } icc_sgi1r_write(sgir); isb(); } static void gicv3_get_affinity(struct pic_softc *pic, size_t irq, kcpuset_t *affinity) { struct gicv3_softc * const sc = PICTOSOFTC(pic); const size_t group = irq / 32; int n; kcpuset_zero(affinity); if (group == 0) { /* All CPUs are targets for group 0 (SGI/PPI) */ for (n = 0; n < ncpu; n++) { kcpuset_set(affinity, n); } } else { /* Find distributor targets (SPI) */ const uint64_t irouter = gicd_read_8(sc, GICD_IROUTER(irq)); for (n = 0; n < ncpu; n++) { if (irouter == GICD_IROUTER_Interrupt_Routing_mode || irouter == sc->sc_irouter[n]) kcpuset_set(affinity, n); } } } static int gicv3_set_affinity(struct pic_softc *pic, size_t irq, const kcpuset_t *affinity) { struct gicv3_softc * const sc = PICTOSOFTC(pic); const size_t group = irq / 32; uint64_t irouter; if (group == 0) return EINVAL; const int set = kcpuset_countset(affinity); if (set == 1) { irouter = sc->sc_irouter[kcpuset_ffs(affinity) - 1]; } else if (set == ncpu && GIC_SUPPORTS_1OFN(sc) && gicv3_use_1ofn) { irouter = GICD_IROUTER_Interrupt_Routing_mode; } else { return EINVAL; } gicd_write_8(sc, GICD_IROUTER(irq), irouter); return 0; } #endif static const struct pic_ops gicv3_picops = { .pic_unblock_irqs = gicv3_unblock_irqs, .pic_block_irqs = gicv3_block_irqs, .pic_establish_irq = gicv3_establish_irq, .pic_set_priority = gicv3_set_priority, #ifdef MULTIPROCESSOR .pic_cpu_init = gicv3_cpu_init, .pic_ipi_send = gicv3_ipi_send, .pic_get_affinity = gicv3_get_affinity, .pic_set_affinity = gicv3_set_affinity, #endif }; static void gicv3_dcache_wb_range(vaddr_t va, vsize_t len) { cpu_dcache_wb_range(va, len); dsb(sy); } static void gicv3_lpi_unblock_irqs(struct pic_softc *pic, size_t irqbase, uint32_t mask) { struct gicv3_softc * const sc = LPITOSOFTC(pic); int bit; while ((bit = ffs(mask)) != 0) { sc->sc_lpiconf.base[irqbase + bit - 1] |= GIC_LPICONF_Enable; if (sc->sc_lpiconf_flush) gicv3_dcache_wb_range((vaddr_t)&sc->sc_lpiconf.base[irqbase + bit - 1], 1); mask &= ~__BIT(bit - 1); } if (!sc->sc_lpiconf_flush) dsb(ishst); } static void gicv3_lpi_block_irqs(struct pic_softc *pic, size_t irqbase, uint32_t mask) { struct gicv3_softc * const sc = LPITOSOFTC(pic); int bit; while ((bit = ffs(mask)) != 0) { sc->sc_lpiconf.base[irqbase + bit - 1] &= ~GIC_LPICONF_Enable; if (sc->sc_lpiconf_flush) gicv3_dcache_wb_range((vaddr_t)&sc->sc_lpiconf.base[irqbase + bit - 1], 1); mask &= ~__BIT(bit - 1); } if (!sc->sc_lpiconf_flush) dsb(ishst); } static void gicv3_lpi_establish_irq(struct pic_softc *pic, struct intrsource *is) { struct gicv3_softc * const sc = LPITOSOFTC(pic); sc->sc_lpiconf.base[is->is_irq] = IPL_TO_PRIORITY(sc, is->is_ipl) | GIC_LPICONF_Res1; if (sc->sc_lpiconf_flush) gicv3_dcache_wb_range((vaddr_t)&sc->sc_lpiconf.base[is->is_irq], 1); else dsb(ishst); } static void gicv3_lpi_cpu_init(struct pic_softc *pic, struct cpu_info *ci) { struct gicv3_softc * const sc = LPITOSOFTC(pic); struct gicv3_lpi_callback *cb; uint64_t propbase, pendbase; uint32_t ctlr; /* If physical LPIs are not supported on this redistributor, just return. */ const uint64_t typer = gicr_read_8(sc, ci->ci_gic_redist, GICR_TYPER); if ((typer & GICR_TYPER_PLPIS) == 0) return; /* Interrupt target address for this CPU, used by ITS when GITS_TYPER.PTA == 0 */ sc->sc_processor_id[cpu_index(ci)] = __SHIFTOUT(typer, GICR_TYPER_Processor_Number); /* Disable LPIs before making changes */ ctlr = gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR); ctlr &= ~GICR_CTLR_Enable_LPIs; gicr_write_4(sc, ci->ci_gic_redist, GICR_CTLR, ctlr); dsb(sy); /* Setup the LPI configuration table */ propbase = sc->sc_lpiconf.segs[0].ds_addr | __SHIFTIN(ffs(pic->pic_maxsources) - 1, GICR_PROPBASER_IDbits) | __SHIFTIN(GICR_Shareability_IS, GICR_PROPBASER_Shareability) | __SHIFTIN(GICR_Cache_NORMAL_RA_WA_WB, GICR_PROPBASER_InnerCache); gicr_write_8(sc, ci->ci_gic_redist, GICR_PROPBASER, propbase); propbase = gicr_read_8(sc, ci->ci_gic_redist, GICR_PROPBASER); if (__SHIFTOUT(propbase, GICR_PROPBASER_Shareability) != GICR_Shareability_IS) { if (__SHIFTOUT(propbase, GICR_PROPBASER_Shareability) == GICR_Shareability_NS) { propbase &= ~GICR_PROPBASER_Shareability; propbase |= __SHIFTIN(GICR_Shareability_NS, GICR_PROPBASER_Shareability); propbase &= ~GICR_PROPBASER_InnerCache; propbase |= __SHIFTIN(GICR_Cache_NORMAL_NC, GICR_PROPBASER_InnerCache); gicr_write_8(sc, ci->ci_gic_redist, GICR_PROPBASER, propbase); } sc->sc_lpiconf_flush = true; } /* Setup the LPI pending table */ pendbase = sc->sc_lpipend[cpu_index(ci)].segs[0].ds_addr | __SHIFTIN(GICR_Shareability_IS, GICR_PENDBASER_Shareability) | __SHIFTIN(GICR_Cache_NORMAL_RA_WA_WB, GICR_PENDBASER_InnerCache); gicr_write_8(sc, ci->ci_gic_redist, GICR_PENDBASER, pendbase); pendbase = gicr_read_8(sc, ci->ci_gic_redist, GICR_PENDBASER); if (__SHIFTOUT(pendbase, GICR_PENDBASER_Shareability) == GICR_Shareability_NS) { pendbase &= ~GICR_PENDBASER_Shareability; pendbase |= __SHIFTIN(GICR_Shareability_NS, GICR_PENDBASER_Shareability); pendbase &= ~GICR_PENDBASER_InnerCache; pendbase |= __SHIFTIN(GICR_Cache_NORMAL_NC, GICR_PENDBASER_InnerCache); gicr_write_8(sc, ci->ci_gic_redist, GICR_PENDBASER, pendbase); } /* Enable LPIs */ ctlr = gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR); ctlr |= GICR_CTLR_Enable_LPIs; gicr_write_4(sc, ci->ci_gic_redist, GICR_CTLR, ctlr); dsb(sy); /* Setup ITS if present */ LIST_FOREACH(cb, &sc->sc_lpi_callbacks, list) cb->cpu_init(cb->priv, ci); } #ifdef MULTIPROCESSOR static void gicv3_lpi_get_affinity(struct pic_softc *pic, size_t irq, kcpuset_t *affinity) { struct gicv3_softc * const sc = LPITOSOFTC(pic); struct gicv3_lpi_callback *cb; kcpuset_zero(affinity); LIST_FOREACH(cb, &sc->sc_lpi_callbacks, list) cb->get_affinity(cb->priv, irq, affinity); } static int gicv3_lpi_set_affinity(struct pic_softc *pic, size_t irq, const kcpuset_t *affinity) { struct gicv3_softc * const sc = LPITOSOFTC(pic); struct gicv3_lpi_callback *cb; int error = EINVAL; LIST_FOREACH(cb, &sc->sc_lpi_callbacks, list) { error = cb->set_affinity(cb->priv, irq, affinity); if (error != EPASSTHROUGH) return error; } return EINVAL; } #endif static const struct pic_ops gicv3_lpiops = { .pic_unblock_irqs = gicv3_lpi_unblock_irqs, .pic_block_irqs = gicv3_lpi_block_irqs, .pic_establish_irq = gicv3_lpi_establish_irq, #ifdef MULTIPROCESSOR .pic_cpu_init = gicv3_lpi_cpu_init, .pic_get_affinity = gicv3_lpi_get_affinity, .pic_set_affinity = gicv3_lpi_set_affinity, #endif }; void gicv3_dma_alloc(struct gicv3_softc *sc, struct gicv3_dma *dma, bus_size_t len, bus_size_t align) { int nsegs, error; dma->len = len; error = bus_dmamem_alloc(sc->sc_dmat, dma->len, align, 0, dma->segs, 1, &nsegs, BUS_DMA_WAITOK); if (error) panic("bus_dmamem_alloc failed: %d", error); error = bus_dmamem_map(sc->sc_dmat, dma->segs, nsegs, len, (void **)&dma->base, BUS_DMA_WAITOK); if (error) panic("bus_dmamem_map failed: %d", error); error = bus_dmamap_create(sc->sc_dmat, len, 1, len, 0, BUS_DMA_WAITOK, &dma->map); if (error) panic("bus_dmamap_create failed: %d", error); error = bus_dmamap_load(sc->sc_dmat, dma->map, dma->base, dma->len, NULL, BUS_DMA_WAITOK); if (error) panic("bus_dmamap_load failed: %d", error); memset(dma->base, 0, dma->len); bus_dmamap_sync(sc->sc_dmat, dma->map, 0, dma->len, BUS_DMASYNC_PREWRITE); } static void gicv3_lpi_init(struct gicv3_softc *sc) { /* * Allocate LPI configuration table */ gicv3_dma_alloc(sc, &sc->sc_lpiconf, sc->sc_lpi.pic_maxsources, 0x1000); KASSERT((sc->sc_lpiconf.segs[0].ds_addr & ~GICR_PROPBASER_Physical_Address) == 0); /* * Allocate LPI pending tables */ const bus_size_t lpipend_sz = (8192 + sc->sc_lpi.pic_maxsources) / NBBY; for (int cpuindex = 0; cpuindex < ncpu; cpuindex++) { gicv3_dma_alloc(sc, &sc->sc_lpipend[cpuindex], lpipend_sz, 0x10000); KASSERT((sc->sc_lpipend[cpuindex].segs[0].ds_addr & ~GICR_PENDBASER_Physical_Address) == 0); } } void gicv3_irq_handler(void *frame) { struct cpu_info * const ci = curcpu(); struct gicv3_softc * const sc = gicv3_softc; struct pic_softc *pic; const int oldipl = ci->ci_cpl; const int oldhwpl = IPL_TO_HWPL(oldipl); ci->ci_data.cpu_nintr++; if (ci->ci_hwpl != oldhwpl) { ci->ci_hwpl = oldhwpl; icc_pmr_write(IPL_TO_PMR(sc, oldhwpl)); if (oldhwpl == IPL_HIGH) { return; } } for (;;) { const uint32_t iar = icc_iar1_read(); dsb(sy); const uint32_t irq = __SHIFTOUT(iar, ICC_IAR_INTID); if (irq == ICC_IAR_INTID_SPURIOUS) break; pic = irq >= GIC_LPI_BASE ? &sc->sc_lpi : &sc->sc_pic; if (irq - pic->pic_irqbase >= pic->pic_maxsources) continue; struct intrsource * const is = pic->pic_sources[irq - pic->pic_irqbase]; KASSERT(is != NULL); const bool early_eoi = irq < GIC_LPI_BASE && is->is_type == IST_EDGE; const int ipl = is->is_ipl; if (__predict_false(ipl < ci->ci_cpl)) { pic_do_pending_ints(I32_bit, ipl, frame); } else if (ci->ci_cpl != ipl) { KASSERT(ipl >= IPL_VM); icc_pmr_write(IPL_TO_PMR(sc, ipl)); ci->ci_hwpl = ci->ci_cpl = ipl; } if (early_eoi) { icc_eoi1r_write(iar); isb(); } const int64_t nintr = ci->ci_data.cpu_nintr; ENABLE_INTERRUPT(); pic_dispatch(is, frame); DISABLE_INTERRUPT(); if (nintr != ci->ci_data.cpu_nintr) ci->ci_intr_preempt.ev_count++; if (!early_eoi) { icc_eoi1r_write(iar); isb(); } } pic_do_pending_ints(I32_bit, oldipl, frame); } static bool gicv3_cpuif_is_nonsecure(struct gicv3_softc *sc) { /* * Write 0 to bit7 and see if it sticks. This is only possible if * we have a non-secure view of the PMR register. */ const uint32_t opmr = icc_pmr_read(); icc_pmr_write(0); const uint32_t npmr = icc_pmr_read(); icc_pmr_write(opmr); return (npmr & GICC_PMR_NONSECURE) == 0; } static bool gicv3_dist_is_nonsecure(struct gicv3_softc *sc) { const uint32_t gicd_ctrl = gicd_read_4(sc, GICD_CTRL); /* * If security is enabled, we have a non-secure view of the IPRIORITYRn * registers and LPI configuration priority fields. */ return (gicd_ctrl & GICD_CTRL_DS) == 0; } /* * Rockchip RK3399 provides a different view of int priority registers * depending on which firmware is in use. This is hard to detect in * a way that could possibly break other boards, so only do this * detection if we know we are on a RK3399 SoC. */ static void gicv3_quirk_rockchip_rk3399(struct gicv3_softc *sc) { /* Detect the number of supported PMR bits */ icc_pmr_write(0xff); const uint8_t pmrbits = icc_pmr_read(); /* Detect the number of supported IPRIORITYRn bits */ const uint32_t oiprio = gicd_read_4(sc, GICD_IPRIORITYRn(8)); gicd_write_4(sc, GICD_IPRIORITYRn(8), oiprio | 0xff); const uint8_t pribits = gicd_read_4(sc, GICD_IPRIORITYRn(8)) & 0xff; gicd_write_4(sc, GICD_IPRIORITYRn(8), oiprio); /* * If we see fewer PMR bits than IPRIORITYRn bits here, it means * we have a secure view of IPRIORITYRn (this is not supposed to * happen!). */ if (pmrbits < pribits) { aprint_verbose_dev(sc->sc_dev, "buggy RK3399 firmware detected; applying workaround\n"); sc->sc_priority_shift = GIC_PRIO_SHIFT_S; } } int gicv3_init(struct gicv3_softc *sc) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; KASSERT(CPU_IS_PRIMARY(curcpu())); LIST_INIT(&sc->sc_lpi_callbacks); /* Store route to CPU for SPIs */ sc->sc_irouter = kmem_zalloc(sizeof(*sc->sc_irouter) * ncpu, KM_SLEEP); for (CPU_INFO_FOREACH(cii, ci)) { KASSERT(cpu_index(ci) < ncpu); sc->sc_irouter[cpu_index(ci)] = ci->ci_cpuid; } sc->sc_gicd_typer = gicd_read_4(sc, GICD_TYPER); /* * We don't always have a consistent view of priorities between the * CPU interface (ICC_PMR_EL1) and the GICD/GICR registers. Detect * if we are making secure or non-secure accesses to each, and adjust * the values that we write to each accordingly. */ const bool dist_ns = gicv3_dist_is_nonsecure(sc); sc->sc_priority_shift = dist_ns ? GIC_PRIO_SHIFT_NS : GIC_PRIO_SHIFT_S; const bool cpuif_ns = gicv3_cpuif_is_nonsecure(sc); sc->sc_pmr_shift = cpuif_ns ? GIC_PRIO_SHIFT_NS : GIC_PRIO_SHIFT_S; if ((sc->sc_quirks & GICV3_QUIRK_RK3399) != 0) gicv3_quirk_rockchip_rk3399(sc); aprint_verbose_dev(sc->sc_dev, "iidr 0x%08x, cpuif %ssecure, dist %ssecure, " "priority shift %d, pmr shift %d, quirks %#x\n", gicd_read_4(sc, GICD_IIDR), cpuif_ns ? "non-" : "", dist_ns ? "non-" : "", sc->sc_priority_shift, sc->sc_pmr_shift, sc->sc_quirks); sc->sc_pic.pic_ops = &gicv3_picops; sc->sc_pic.pic_maxsources = GICD_TYPER_LINES(sc->sc_gicd_typer); snprintf(sc->sc_pic.pic_name, sizeof(sc->sc_pic.pic_name), "gicv3"); #ifdef MULTIPROCESSOR sc->sc_pic.pic_cpus = kcpuset_running; #endif pic_add(&sc->sc_pic, 0); if ((sc->sc_gicd_typer & GICD_TYPER_LPIS) != 0) { sc->sc_lpipend = kmem_zalloc(sizeof(*sc->sc_lpipend) * ncpu, KM_SLEEP); sc->sc_processor_id = kmem_zalloc(sizeof(*sc->sc_processor_id) * ncpu, KM_SLEEP); sc->sc_lpi.pic_ops = &gicv3_lpiops; sc->sc_lpi.pic_maxsources = 8192; /* Min. required by GICv3 spec */ snprintf(sc->sc_lpi.pic_name, sizeof(sc->sc_lpi.pic_name), "gicv3-lpi"); pic_add(&sc->sc_lpi, GIC_LPI_BASE); sc->sc_lpi_pool = vmem_create("gicv3-lpi", 0, sc->sc_lpi.pic_maxsources, 1, NULL, NULL, NULL, 0, VM_SLEEP, IPL_HIGH); if (sc->sc_lpi_pool == NULL) panic("failed to create gicv3 lpi pool\n"); gicv3_lpi_init(sc); } KASSERT(gicv3_softc == NULL); gicv3_softc = sc; for (int i = 0; i < sc->sc_bsh_r_count; i++) { const uint64_t gicr_typer = gicr_read_8(sc, i, GICR_TYPER); const u_int aff0 = __SHIFTOUT(gicr_typer, GICR_TYPER_Affinity_Value_Aff0); const u_int aff1 = __SHIFTOUT(gicr_typer, GICR_TYPER_Affinity_Value_Aff1); const u_int aff2 = __SHIFTOUT(gicr_typer, GICR_TYPER_Affinity_Value_Aff2); const u_int aff3 = __SHIFTOUT(gicr_typer, GICR_TYPER_Affinity_Value_Aff3); aprint_debug_dev(sc->sc_dev, "redist %d: cpu %d.%d.%d.%d\n", i, aff3, aff2, aff1, aff0); } gicv3_dist_enable(sc); gicv3_cpu_init(&sc->sc_pic, curcpu()); if ((sc->sc_gicd_typer & GICD_TYPER_LPIS) != 0) gicv3_lpi_cpu_init(&sc->sc_lpi, curcpu()); #ifdef MULTIPROCESSOR intr_establish_xname(IPI_AST, IPL_VM, IST_MPSAFE | IST_EDGE, pic_ipi_ast, (void *)-1, "IPI ast"); intr_establish_xname(IPI_XCALL, IPL_HIGH, IST_MPSAFE | IST_EDGE, pic_ipi_xcall, (void *)-1, "IPI xcall"); intr_establish_xname(IPI_GENERIC, IPL_HIGH, IST_MPSAFE | IST_EDGE, pic_ipi_generic, (void *)-1, "IPI generic"); intr_establish_xname(IPI_NOP, IPL_VM, IST_MPSAFE | IST_EDGE, pic_ipi_nop, (void *)-1, "IPI nop"); intr_establish_xname(IPI_SHOOTDOWN, IPL_SCHED, IST_MPSAFE | IST_EDGE, pic_ipi_shootdown, (void *)-1, "IPI shootdown"); #ifdef DDB intr_establish_xname(IPI_DDB, IPL_HIGH, IST_MPSAFE | IST_EDGE, pic_ipi_ddb, NULL, "IPI ddb"); #endif #ifdef __HAVE_PREEMPTION intr_establish_xname(IPI_KPREEMPT, IPL_VM, IST_MPSAFE | IST_EDGE, pic_ipi_kpreempt, (void *)-1, "IPI kpreempt"); #endif #endif return 0; }