/* $NetBSD: rpc_machdep.c,v 1.101 2022/05/15 20:37:50 andvar Exp $ */ /* * Copyright (c) 2000-2002 Reinoud Zandijk. * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependent functions for kernel setup * * This file still needs a lot of work * * Created : 17/09/94 * Updated for yet another new bootloader 28/12/02 */ #include "opt_ddb.h" #include "opt_modular.h" #include "vidcvideo.h" #include "podulebus.h" #include __KERNEL_RCSID(0, "$NetBSD: rpc_machdep.c,v 1.101 2022/05/15 20:37:50 andvar Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static i2c_tag_t acorn32_i2c_tag; #include "ksyms.h" /* Kernel text starts at the base of the kernel address space. */ #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000) #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) /* * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space * Fixed mappings exist from 0xf6000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x05000000 struct bootconfig bootconfig; /* Boot config storage */ videomemory_t videomemory; /* Video memory descriptor */ char *boot_args = NULL; /* holds the pre-processed boot arguments */ extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */ extern int *vidc_base; extern uint32_t iomd_base; extern struct bus_space iomd_bs_tag; paddr_t physical_start; paddr_t kernel_start; paddr_t physical_freestart; paddr_t physical_freeend; paddr_t physical_end; paddr_t dma_range_begin; paddr_t dma_range_end; u_int free_pages; paddr_t memoryblock_end; #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ u_int videodram_size = 0; /* Amount of DRAM to reserve for video */ paddr_t msgbufphys; #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */ #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel 0-4MB*/ #define KERNEL_PT_KERNEL_4MB 3 /* Page table for mapping kernel 4-8MB*/ #define KERNEL_PT_VMDATA 4 /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; #ifdef CPU_SA110 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2) static vaddr_t sa110_cc_base; #endif /* CPU_SA110 */ /* Prototypes */ void physcon_display_base(u_int); extern void consinit(void); void data_abort_handler(trapframe_t *); void prefetch_abort_handler(trapframe_t *); void undefinedinstruction_bounce(trapframe_t *frame); static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *); static void process_kernel_args(void); extern void dump_spl_masks(void); void rpc_sa110_cc_setup(void); void parse_rpc_bootargs(char *args); extern void dumpsys(void); # define console_flush() /* empty */ #define panic2(a) do { \ memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \ consinit(); \ panic a; \ } while (/* CONSTCOND */ 0) /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ /* NOTE: These variables will be removed, well some of them */ extern u_int current_mask; void cpu_reboot(int howto, char *bootstr) { #ifdef DIAGNOSTIC printf("boot: howto=%08x curlwp=%p\n", howto, curlwp); printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n", irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY], irqmasks[IPL_VM]); printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n", irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]); dump_spl_masks(); #endif /* DIAGNOSTIC */ /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); pmf_system_shutdown(boothowto); printf("Halted while still in the ICE age.\n"); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* Disable console buffering */ cnpollc(1); /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during * the unmount. It looks like syslogd is getting woken up * only to find that it cannot page part of the binary in as * the filesystem has been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* * Auto reboot overload protection * * This code stops the kernel entering an endless loop of reboot * - panic cycles. This will have the effect of stopping further * reboots after it has rebooted 8 times after panics. A clean * halt or reboot will reset the counter. */ /* * Have we done 8 reboots in a row ? If so halt rather than reboot * since 8 panics in a row without 1 clean halt means something is * seriously wrong. */ if (cmos_read(RTC_ADDR_REBOOTCNT) > 8) howto |= RB_HALT; /* * If we are rebooting on a panic then up the reboot count * otherwise reset. * This will thus be reset if the kernel changes the boot action from * reboot to halt due to too any reboots. */ if (((howto & RB_HALT) == 0) && panicstr) cmos_write(RTC_ADDR_REBOOTCNT, cmos_read(RTC_ADDR_REBOOTCNT) + 1); else cmos_write(RTC_ADDR_REBOOTCNT, 0); /* * If we need a RiscBSD reboot, request it buy setting a bit in * the CMOS RAM. This can be detected by the RiscBSD boot loader * during a RISCOS boot. No other way to do this as RISCOS is in ROM. */ if ((howto & RB_HALT) == 0) cmos_write(RTC_ADDR_BOOTOPTS, cmos_read(RTC_ADDR_BOOTOPTS) | 0x02); /* Run any shutdown hooks */ doshutdownhooks(); pmf_system_shutdown(boothowto); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* * u_int initarm(BootConfig *bootconf) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ /* * this part is completely rewritten for the new bootloader ... It features * a flat memory map with a mapping comparable to the EBSA arm32 machine * to boost the portability and likeness of the code */ /* * Mapping table for core kernel memory. This memory is mapped at init * time with section mappings. * * XXX One big assumption in the current architecture seems that the kernel is * XXX supposed to be mapped into bootconfig.dram[0]. */ #define ONE_MB 0x100000 struct l1_sec_map { vaddr_t va; paddr_t pa; vsize_t size; vm_prot_t prot; int cache; } l1_sec_table[] = { /* Map 1Mb section for VIDC20 */ { VIDC_BASE, VIDC_HW_BASE, ONE_MB, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, /* Map 1Mb section from IOMD */ { IOMD_BASE, IOMD_HW_BASE, ONE_MB, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, /* Map 1Mb of COMBO (and module space) */ { IO_BASE, IO_HW_BASE, ONE_MB, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, #if NPODULEBUS > 0 /* XXXJRT */ /* Map the Fast and Sync simple podule space */ { SYNC_PODULE_BASE & 0xfff00000, SYNC_PODULE_HW_BASE & 0xfff00000, L1_S_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, /* Map the EASI podule space */ { EASI_BASE, EASI_HW_BASE, MAX_PODULES * EASI_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, #endif { 0, 0, 0, 0, 0 } }; static void canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf) { /* check for bootconfig v2+ structure */ if (raw_bootconf->magic == BOOTCONFIG_MAGIC) { /* v2+ cleaned up structure found */ *bootconf = *raw_bootconf; return; } else { panic2(("Internal error: no valid bootconfig block found")); } } vaddr_t initarm(void *cookie) { struct bootconfig *raw_bootconf = cookie; int loop; int loop1; u_int logical; u_int kerneldatasize; u_int l1pagetable; struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE; bool hasKinetic = false; paddr_t kinetic_physical_start; /* * Heads up ... Setup the CPU / MMU / TLB functions */ set_cpufuncs(); /* canonicalise the boot configuration structure to allow versioning */ canonicalise_bootconfig(&bootconfig, raw_bootconf); booted_kernel = bootconfig.kernelname; /* if the wscons interface is used, switch off VERBOSE booting :( */ #if NVIDCVIDEO>0 # undef VERBOSE_INIT_ARM #endif /* * Initialise the video memory descriptor * * Note: all references to the video memory virtual/physical address * should go via this structure. */ /* Hardwire it on the place the bootloader tells us */ videomemory.vidm_vbase = bootconfig.display_start; videomemory.vidm_pbase = bootconfig.display_phys; videomemory.vidm_size = bootconfig.display_size; if (bootconfig.vram[0].pages) videomemory.vidm_type = VIDEOMEM_TYPE_VRAM; else videomemory.vidm_type = VIDEOMEM_TYPE_DRAM; vidc_base = (int *) VIDC_HW_BASE; iomd_base = IOMD_HW_BASE; /* * Initialise the physical console * This is done in main() but for the moment we do it here so that * we can use printf in initarm() before main() has been called. * only for `vidcconsole!' ... not wscons */ #if NVIDCVIDEO == 0 consinit(); #endif /* * Initialise the diagnostic serial console * This allows a means of generating output during initarm(). * Once all the memory map changes are complete we can call consinit() * and not have to worry about things moving. */ /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */ /* XXX snif .... i am still not able to this */ /* * We have the following memory map (derived from EBSA) * * virtual address == physical address apart from the areas: * 0x00000000 -> 0x000fffff which is mapped to * top 1MB of physical memory * 0xf0000000 -> 0xf0ffffff which is mapped to * physical address 0x10000000 -> 0x10ffffff * or on a Kinetic: * physical address 0x20400000 -> 0x20ffffff * * This means that the kernel is mapped suitably for continuing * execution, all I/O is mapped 1:1 virtual to physical and * physical memory is accessible. * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ #ifdef FORCE_VERBOSE_INIT_ARM /* * note that this will stop working after we switch to the new * L1 Table */ memset((void *) (videomemory.vidm_vbase), 0x55, videomemory.vidm_size); consinit(); printf("\n\n\n\n\n\n\n"); #define VERBOSE_INIT_ARM #endif /* START OF REAL NEW STUFF */ /* Check to make sure the page size is correct */ if (PAGE_SIZE != bootconfig.pagesize) panic2(("Page size is %d bytes instead of %d !! (huh?)\n", bootconfig.pagesize, PAGE_SIZE)); /* process arguments */ process_kernel_args(); /* * Now set up the page tables for the kernel ... this part is copied * in a (modified?) way from the EBSA machine port.... */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif /* * Set up the variables that define the availability of physical * memory */ physical_start = 0xffffffff; physical_end = 0; kinetic_physical_start = 0xffffffff; #ifdef VERBOSE_INIT_ARM printf("memory blocks:\n"); #endif for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) { #ifdef VERBOSE_INIT_ARM printf("0x%x + 0x%0x, type = 0x%08x\n", bootconfig.dram[loop].address, bootconfig.dram[loop].pages * PAGE_SIZE, bootconfig.dram[loop].flags); #endif if (bootconfig.dram[loop].address < physical_start) physical_start = bootconfig.dram[loop].address; memoryblock_end = bootconfig.dram[loop].address + bootconfig.dram[loop].pages * PAGE_SIZE; if (memoryblock_end > physical_end) physical_end = memoryblock_end; physmem += bootconfig.dram[loop].pages; if (bootconfig.dram[loop].flags & PHYSMEM_TYPE_PROCESSOR_ONLY) { hasKinetic = true; if (bootconfig.dram[loop].address < kinetic_physical_start) kinetic_physical_start = bootconfig.dram[loop].address; } }; if (hasKinetic) { /* Kinetics can only DMA from the Normal DRAM */ dma_range_begin = 0xffffffff; dma_range_end = 0; for (loop = 0; loop < bootconfig.dramblocks; ++loop) { if (bootconfig.dram[loop].flags == PHYSMEM_TYPE_GENERIC) { if (bootconfig.dram[loop].address < dma_range_begin) dma_range_begin = bootconfig.dram[loop].address; memoryblock_end = bootconfig.dram[loop].address + bootconfig.dram[loop].pages * PAGE_SIZE; if (memoryblock_end > dma_range_end) dma_range_end = memoryblock_end; } } dma_range_end = (paddr_t) MIN(dma_range_end, 256*1024*1024); } else { /* everything else DMAs all the memory */ dma_range_begin = (paddr_t) physical_start; dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024); } /* set the location of the kernel in physical memory */ if (hasKinetic) { kernel_start = kinetic_physical_start; } else { kernel_start = physical_start; } physical_freestart = kernel_start; free_pages = bootconfig.drampages; physical_freeend = physical_end; /* * AHUM !! set this variable ... it was set up in the old 1st * stage bootloader */ kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize; /* Update the address of the first free page of physical memory */ physical_freestart += bootconfig.kernsize + bootconfig.scratchsize; free_pages -= (bootconfig.kernsize + bootconfig.scratchsize) / PAGE_SIZE; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - kernel_start; #define alloc_pages(var, np) \ (var) = physical_freestart; \ physical_freestart += ((np) * PAGE_SIZE); \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } #ifdef DIAGNOSTIC /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic2(("initarm: Failed to align the kernel page " "directory\n")); #endif /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("Setting up stacks :\n"); printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); printf("\n"); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); #ifdef CPU_SA110 /* * XXX totally stuffed hack to work round problems introduced * in recent versions of the pmap code. Due to the calls used there * we cannot allocate virtual memory during bootstrap. */ sa110_cc_base = (KERNEL_BASE + (physical_freestart - kernel_start) + (CPU_SA110_CACHE_CLEAN_SIZE - 1)) & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1); #endif /* CPU_SA110 */ /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table p@0x%08x\n", (uint32_t)kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNEL_BASE, &kernel_pt_table[KERNEL_PT_KERNEL]); pmap_link_l2pt(l1pagetable, KERNEL_BASE + 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL_4MB]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); pmap_link_l2pt(l1pagetable, VMEM_VBASE, &kernel_pt_table[KERNEL_PT_VMEM]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel code/data */ /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */ /* * The defines are a workaround for a recent problem that occurred * with ARM 610 processors and some ARM 710 processors * Other ARM 710 and StrongARM processors don't have a problem. */ if (N_GETMAGIC(kernexec[0]) == ZMAGIC) { #if defined(CPU_ARM6) || defined(CPU_ARM7) logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, kernel_start, kernexec->a_text, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #else /* CPU_ARM6 || CPU_ARM7 */ logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, kernel_start, kernexec->a_text, VM_PROT_READ, PTE_CACHE); #endif /* CPU_ARM6 || CPU_ARM7 */ logical += pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE + logical, kernel_start + logical, kerneldatasize - kernexec->a_text, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } else { /* !ZMAGIC */ /* * Most likely an ELF kernel ... * XXX no distinction yet between read only and * read/write area's ... */ pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, kernel_start, kerneldatasize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); }; #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Now we fill in the L2 pagetable for the VRAM */ /* * Current architectures mean that the VRAM is always in 1 * continuous bank. This means that we can just map the 2 meg * that the VRAM would occupy. In theory we don't need a page * table for VRAM, we could section map it but we would need * the page tables if DRAM was in use. * XXX please map two adjacent virtual areas to ONE physical * area */ pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase, videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size, videomemory.vidm_pbase, videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the core memory needed before autoconfig */ loop = 0; while (l1_sec_table[loop].size) { vsize_t sz; #ifdef VERBOSE_INIT_ARM printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa, l1_sec_table[loop].pa + l1_sec_table[loop].size - 1, l1_sec_table[loop].va); #endif for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE) pmap_map_section(l1pagetable, l1_sec_table[loop].va + sz, l1_sec_table[loop].pa + sz, l1_sec_table[loop].prot, l1_sec_table[loop].cache); ++loop; } /* * Now we have the real page tables in place so we can switch * to them. Once this is done we will be running with the * REAL kernel page tables. */ /* be a client to all domains */ cpu_domains(0x55555555); /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("switching to new L1 page table\n"); #endif cpu_setttb(kernel_l1pt.pv_pa, true); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in cpu_setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); /* * if there is support for a serial console ...we should now * reattach it */ /* fcomcndetach();*/ /* * Reflect videomemory relocation in the videomemory structure * and reinit console */ if (bootconfig.vram[0].pages == 0) { videomemory.vidm_vbase = VMEM_VBASE; } else { videomemory.vidm_vbase = VMEM_VBASE; bootconfig.display_start = VMEM_VBASE; }; vidc_base = (int *) VIDC_BASE; iomd_base = IOMD_BASE; #ifdef FORCE_VERBOSE_INIT_ARM2 consinit(); printf("\n\n\n\n\n\n\n"); #define VERBOSE_INIT_ARM #endif #ifdef VERBOSE_INIT_ARM printf("running on the new L1 page table!\n"); printf("done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); #ifdef VERBOSE_INIT_ARM printf("\n"); #endif /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); console_flush(); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); #ifdef VERBOSE_INIT_ARM printf("kstack V%08lx P%08lx\n", kernelstack.pv_va, kernelstack.pv_pa); #endif /* VERBOSE_INIT_ARM */ /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. Until then we will use a handler that just panics but * tells us why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; console_flush(); /* * At last ! * We now have the kernel in physical memory from the bottom upwards. * Kernel page tables are physically above this. * The kernel is mapped to 0xf0000000 * The kernel data PTs will handle the mapping of * 0xf1000000-0xf5ffffff (80 Mb) * 2Meg of VRAM is mapped to 0xf7000000 * The page tables are mapped to 0xefc00000 * The IOMD is mapped to 0xf6000000 * The VIDC is mapped to 0xf6100000 * The IOMD/VIDC could be pushed up higher but i havent got * sufficient documentation to do so; the addresses are not * parametized yet and hard to read... better fix this before; * its pretty unforgiving. */ /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); console_flush(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_md_init(); for (loop = 0; loop < bootconfig.dramblocks; loop++) { paddr_t start = (paddr_t)bootconfig.dram[loop].address; paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE); if (end > physical_freestart) { if (start < physical_freestart) start = physical_freestart; if (end > physical_freeend) end = physical_freeend; } if (bootconfig.dram[loop].flags & PHYSMEM_TYPE_PROCESSOR_ONLY) { uvm_page_physload(atop(start), atop(end), atop(start), atop(end), VM_FREELIST_DEFAULT); } else { uvm_page_physload(atop(start), atop(end), atop(start), atop(end), VM_FREELIST_RPCDMA); } } /* Boot strap pmap telling it where managed kernel virtual memory is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); console_flush(); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif console_flush(); irq_init(); #ifdef VERBOSE_INIT_ARM printf("done.\n\n"); #endif #if NVIDCVIDEO>0 consinit(); /* necessary ? */ #endif /* Talk to the user */ printf("NetBSD/acorn32 booting ... \n"); /* Tell the user if his boot loader is too old */ if ((bootconfig.magic < BOOTCONFIG_MAGIC) || (bootconfig.version != BOOTCONFIG_VERSION)) { printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n"); delay(5000000); } printf("Kernel loaded from file %s\n", bootconfig.kernelname); printf("Kernel arg string (@%p) %s\n", bootconfig.args, bootconfig.args); printf("\nBoot configuration structure reports the following " "memory\n"); printf(" DRAM block 0a at %08x size %08x " "DRAM block 0b at %08x size %08x\n\r", bootconfig.dram[0].address, bootconfig.dram[0].pages * bootconfig.pagesize, bootconfig.dram[1].address, bootconfig.dram[1].pages * bootconfig.pagesize); printf(" DRAM block 1a at %08x size %08x " "DRAM block 1b at %08x size %08x\n\r", bootconfig.dram[2].address, bootconfig.dram[2].pages * bootconfig.pagesize, bootconfig.dram[3].address, bootconfig.dram[3].pages * bootconfig.pagesize); printf(" VRAM block 0 at %08x size %08x\n\r", bootconfig.vram[0].address, bootconfig.vram[0].pages * bootconfig.pagesize); if (hasKinetic) printf("%s", " Kinetic memory was detected\n\r"); /* * Get a handle on the I2C interface so we can read * the NVRAM in the real-time clock chip. */ acorn32_i2c_tag = iomdiic_bootstrap_cookie(); if (cmos_read(RTC_ADDR_REBOOTCNT) > 0) printf("Warning: REBOOTCNT = %d\n", cmos_read(RTC_ADDR_REBOOTCNT)); #ifdef CPU_SA110 if (cputype == CPU_ID_SA110) rpc_sa110_cc_setup(); #endif /* CPU_SA110 */ #if NKSYMS || defined(DDB) || defined(MODULAR) ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start, (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end); #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* DDB */ /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } static void process_kernel_args(void) { char *args; /* Ok now we will check the arguments for interesting parameters. */ args = bootconfig.args; boothowto = 0; /* Only arguments itself are passed from the new bootloader */ while (*args == ' ') ++args; boot_args = args; parse_mi_bootargs(boot_args); parse_rpc_bootargs(boot_args); } void parse_rpc_bootargs(char *args) { int integer; if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT, &integer)) { videodram_size = integer; /* Round to 4K page */ videodram_size *= 1024; videodram_size = round_page(videodram_size); if (videodram_size > 1024*1024) videodram_size = 1024*1024; } #if 0 /* XXX this I would rather have in the new bootconfig structure */ if (get_bootconf_option(args, "kinetic", BOOTOPT_TYPE_BOOLEAN, &integer)) { bootconfig.RPC_kinetic_card_support = 1; } #endif } #ifdef CPU_SA110 /* * For optimal cache cleaning we need two 16K banks of * virtual address space that NOTHING else will access * and then we alternate the cache cleaning between the * two banks. * The cache cleaning code requires 2 banks aligned * on total size boundary so the banks can be alternated by * xorring the size bit (assumes the bank size is a power of 2) */ extern unsigned int sa1_cache_clean_addr; extern unsigned int sa1_cache_clean_size; void rpc_sa110_cc_setup(void) { int loop; paddr_t kaddr; (void) pmap_extract(pmap_kernel(), KERNEL_TEXT_BASE, &kaddr); const pt_entry_t npte = L2_S_PROTO | kaddr | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode; for (loop = 0; loop < CPU_SA110_CACHE_CLEAN_SIZE; loop += PAGE_SIZE) { pt_entry_t * const ptep = vtopte(sa110_cc_base + loop); l2pte_set(ptep, npte, 0); PTE_SYNC(ptep); } sa1_cache_clean_addr = sa110_cc_base; sa1_cache_clean_size = CPU_SA110_CACHE_CLEAN_SIZE / 2; } #endif /* CPU_SA110 */ /* * To convert from RISC OS addresses to real CMOS addresses, do this: * * if (riscosaddr < 0xc0) * realaddr = riscosaddr + 0x40; * else * realaddr = riscosaddr - 0xb0; */ /* Read a byte from CMOS RAM. */ int cmos_read(int location) { uint8_t val; if (pcfrtc_bootstrap_read(acorn32_i2c_tag, 0x50, location, &val, 1) != 0) return (-1); return (val); } /* Write a byte to CMOS RAM. */ int cmos_write(int location, int value) { uint8_t val = value; int oldvalue, oldsum; /* Get the old value and checksum. */ if ((oldvalue = cmos_read(location)) < 0) return (-1); if ((oldsum = cmos_read(RTC_ADDR_CHECKSUM)) < 0) return (-1); if (pcfrtc_bootstrap_write(acorn32_i2c_tag, 0x50, location, &val, 1) != 0) return (-1); /* Now update the checksum. */ val = (uint8_t)oldsum - (uint8_t)oldvalue + val; return (pcfrtc_bootstrap_write(acorn32_i2c_tag, 0x50, RTC_ADDR_CHECKSUM, &val, 1)); } /* End of machdep.c */