geography/R-spatstat.model - The NetBSD Packages Collection

Parametric Statistical Modelling & Inference for the 'spatstat'

Functionality for parametric statistical modelling and inference for
spatial data, mainly spatial point patterns, in the 'spatstat' family
of packages. (Excludes analysis of spatial data on a linear network,
which is covered by the separate package 'spatstat.linnet'.) Supports
parametric modelling, formal statistical inference, and model
validation. Parametric models include Poisson point processes, Cox
point processes, Neyman-Scott cluster processes, Gibbs point processes
and determinantal point processes. Models can be fitted to data using
maximum likelihood, maximum pseudolikelihood, maximum composite
likelihood and the method of minimum contrast. Fitted models can be
simulated and predicted. Formal inference includes hypothesis tests
(quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman
test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised
permutation test, segregation test, ANOVA tests of fitted models,
adjusted composite likelihood ratio test, envelope tests, Dao-Genton
test, balanced independent two-stage test), confidence intervals for
parameters, and prediction intervals for point counts. Model
validation techniques include leverage, influence, partial residuals,
added variable plots, diagnostic plots, pseudoscore residual plots,
model compensators and Q-Q plots.

Build dependencies

pkgtools/mktools pkgtools/cwrappers

Runtime dependencies

math/R-abind math/R-goftest geography/R-spatstat.data geography/R-spatstat.explore geography/R-spatstat.geom geography/R-spatstat.random geography/R-spatstat.sparse geography/R-spatstat.utils math/R-tensor math/R math/R

Binary packages

OSArchitectureVersion
NetBSD 10.0aarch64R-spatstat.model-3.2.8.tgz
NetBSD 10.0aarch64R-spatstat.model-3.2.8.tgz
NetBSD 10.0aarch64ebR-spatstat.model-3.2.8.tgz
NetBSD 10.0aarch64ebR-spatstat.model-3.2.8.tgz
NetBSD 10.0earmv7hfR-spatstat.model-3.2.8.tgz
NetBSD 10.0earmv7hfR-spatstat.model-3.2.8.tgz
NetBSD 10.0i386R-spatstat.model-3.2.8.tgz
NetBSD 10.0i386R-spatstat.model-3.2.8.tgz
NetBSD 10.0powerpcR-spatstat.model-3.2.8.tgz
NetBSD 10.0powerpcR-spatstat.model-3.2.8.tgz
NetBSD 10.0sparc64R-spatstat.model-3.2.8.tgz
NetBSD 10.0sparc64R-spatstat.model-3.2.8.tgz
NetBSD 10.0x86_64R-spatstat.model-3.2.8.tgz
NetBSD 10.0x86_64R-spatstat.model-3.2.8.tgz
NetBSD 9.0aarch64R-spatstat.model-3.2.8.tgz
NetBSD 9.0alphaR-spatstat.model-3.2.8.tgz
NetBSD 9.0alphaR-spatstat.model-3.2.8.tgz
NetBSD 9.0earmv7hfR-spatstat.model-3.2.8.tgz
NetBSD 9.0earmv7hfR-spatstat.model-3.2.8.tgz
NetBSD 9.0i386R-spatstat.model-3.2.8.tgz
NetBSD 9.0i386R-spatstat.model-3.2.8.tgz
NetBSD 9.0powerpcR-spatstat.model-3.2.8.tgz
NetBSD 9.0x86_64R-spatstat.model-3.2.8.tgz
NetBSD 9.0x86_64R-spatstat.model-3.2.8.tgz
NetBSD 9.3x86_64R-spatstat.model-3.2.8.tgz

Binary packages can be installed with the high-level tool pkgin (which can be installed with pkg_add) or pkg_add(1) (installed by default). The NetBSD packages collection is also designed to permit easy installation from source.

Available build options

(none)

Known vulnerabilities

The pkg_admin audit command locates any installed package which has been mentioned in security advisories as having vulnerabilities.

Please note the vulnerabilities database might not be fully accurate, and not every bug is exploitable with every configuration.


Problem reports, updates or suggestions for this package should be reported with send-pr.