/* $NetBSD: entry.c,v 1.1.1.6.6.1 2019/08/10 06:17:17 martin Exp $ */
/* entry.c - routines for dealing with entries */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 1998-2019 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
/* Portions Copyright (c) 1995 Regents of the University of Michigan.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of Michigan at Ann Arbor. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*/
#include
__RCSID("$NetBSD: entry.c,v 1.1.1.6.6.1 2019/08/10 06:17:17 martin Exp $");
#include "portable.h"
#include
#include
#include
#include
#include
#include "slap.h"
#include "ldif.h"
static char *ebuf; /* buf returned by entry2str */
static char *ecur; /* pointer to end of currently used ebuf */
static int emaxsize;/* max size of ebuf */
/*
* Empty root entry
*/
const Entry slap_entry_root = {
NOID, { 0, "" }, { 0, "" }, NULL, 0, { 0, "" }, NULL
};
/*
* these mutexes must be used when calling the entry2str()
* routine since it returns a pointer to static data.
*/
ldap_pvt_thread_mutex_t entry2str_mutex;
static const struct berval dn_bv = BER_BVC("dn");
/*
* Entry free list
*
* Allocate in chunks, minimum of 1000 at a time.
*/
#define CHUNK_SIZE 1000
typedef struct slap_list {
struct slap_list *next;
} slap_list;
static slap_list *entry_chunks;
static Entry *entry_list;
static ldap_pvt_thread_mutex_t entry_mutex;
int entry_destroy(void)
{
slap_list *e;
if ( ebuf ) free( ebuf );
ebuf = NULL;
ecur = NULL;
emaxsize = 0;
for ( e=entry_chunks; e; e=entry_chunks ) {
entry_chunks = e->next;
free( e );
}
ldap_pvt_thread_mutex_destroy( &entry_mutex );
ldap_pvt_thread_mutex_destroy( &entry2str_mutex );
return attr_destroy();
}
int
entry_init(void)
{
ldap_pvt_thread_mutex_init( &entry2str_mutex );
ldap_pvt_thread_mutex_init( &entry_mutex );
return attr_init();
}
Entry *
str2entry( char *s )
{
return str2entry2( s, 1 );
}
#define bvcasematch(bv1, bv2) (ber_bvstrcasecmp(bv1, bv2) == 0)
Entry *
str2entry2( char *s, int checkvals )
{
int rc;
Entry *e;
struct berval *type, *vals, *nvals;
char *freeval;
AttributeDescription *ad, *ad_prev;
const char *text;
char *next;
int attr_cnt;
int i, lines;
Attribute ahead, *atail;
/*
* LDIF is used as the string format.
* An entry looks like this:
*
* dn: \n
* [:[:] \n]
* [\n]*
* ...
*
* If a double colon is used after a type, it means the
* following value is encoded as a base 64 string. This
* happens if the value contains a non-printing character
* or newline.
*/
Debug( LDAP_DEBUG_TRACE, "=> str2entry: \"%s\"\n",
s ? s : "NULL", 0, 0 );
e = entry_alloc();
if( e == NULL ) {
Debug( LDAP_DEBUG_ANY,
"<= str2entry NULL (entry allocation failed)\n",
0, 0, 0 );
return( NULL );
}
/* initialize entry */
e->e_id = NOID;
/* dn + attributes */
atail = &ahead;
ahead.a_next = NULL;
ad = NULL;
ad_prev = NULL;
attr_cnt = 0;
next = s;
lines = ldif_countlines( s );
type = ch_calloc( 1, (lines+1)*3*sizeof(struct berval)+lines );
vals = type+lines+1;
nvals = vals+lines+1;
freeval = (char *)(nvals+lines+1);
i = -1;
/* parse into individual values, record DN */
while ( (s = ldif_getline( &next )) != NULL ) {
int freev;
if ( *s == '\n' || *s == '\0' ) {
break;
}
i++;
if (i >= lines) {
Debug( LDAP_DEBUG_TRACE,
"<= str2entry ran past end of entry\n", 0, 0, 0 );
goto fail;
}
rc = ldif_parse_line2( s, type+i, vals+i, &freev );
freeval[i] = freev;
if ( rc ) {
Debug( LDAP_DEBUG_TRACE,
"<= str2entry NULL (parse_line)\n", 0, 0, 0 );
continue;
}
if ( bvcasematch( &type[i], &dn_bv ) ) {
if ( e->e_dn != NULL ) {
Debug( LDAP_DEBUG_ANY, "str2entry: "
"entry %ld has multiple DNs \"%s\" and \"%s\"\n",
(long) e->e_id, e->e_dn, vals[i].bv_val );
goto fail;
}
rc = dnPrettyNormal( NULL, &vals[i], &e->e_name, &e->e_nname, NULL );
if( rc != LDAP_SUCCESS ) {
Debug( LDAP_DEBUG_ANY, "str2entry: "
"entry %ld has invalid DN \"%s\"\n",
(long) e->e_id, vals[i].bv_val, 0 );
goto fail;
}
if ( freeval[i] ) free( vals[i].bv_val );
vals[i].bv_val = NULL;
i--;
continue;
}
}
lines = i+1;
/* check to make sure there was a dn: line */
if ( BER_BVISNULL( &e->e_name )) {
Debug( LDAP_DEBUG_ANY, "str2entry: entry %ld has no dn\n",
(long) e->e_id, 0, 0 );
goto fail;
}
/* Make sure all attributes with multiple values are contiguous */
if ( checkvals ) {
int j, k;
struct berval bv;
int fv;
for (i=0; ii; k-- ) {
type[k] = type[k-1];
vals[k] = vals[k-1];
freeval[k] = freeval[k-1];
}
k++;
type[k] = type[i];
vals[k] = bv;
freeval[k] = fv;
}
i++;
}
}
}
}
if ( lines > 0 ) {
for ( i=0; i<=lines; i++ ) {
ad_prev = ad;
if ( !ad || ( iad_cname ))) {
ad = NULL;
rc = slap_bv2ad( type+i, &ad, &text );
if( rc != LDAP_SUCCESS ) {
int wtool = ( slapMode & (SLAP_TOOL_MODE|SLAP_TOOL_READONLY) ) == SLAP_TOOL_MODE;
Debug( wtool ? LDAP_DEBUG_ANY : LDAP_DEBUG_TRACE,
"<= str2entry: str2ad(%s): %s\n", type[i].bv_val, text, 0 );
if( wtool ) {
goto fail;
}
rc = slap_bv2undef_ad( type+i, &ad, &text, 0 );
if( rc != LDAP_SUCCESS ) {
Debug( LDAP_DEBUG_ANY,
"<= str2entry: slap_str2undef_ad(%s): %s\n",
type[i].bv_val, text, 0 );
goto fail;
}
}
/* require ';binary' when appropriate (ITS#5071) */
if ( slap_syntax_is_binary( ad->ad_type->sat_syntax ) && !slap_ad_is_binary( ad ) ) {
Debug( LDAP_DEBUG_ANY,
"str2entry: attributeType %s #%d: "
"needs ';binary' transfer as per syntax %s\n",
ad->ad_cname.bv_val, 0,
ad->ad_type->sat_syntax->ssyn_oid );
goto fail;
}
}
if (( ad_prev && ad != ad_prev ) || ( i == lines )) {
int j, k;
atail->a_next = attr_alloc( NULL );
atail = atail->a_next;
atail->a_flags = 0;
atail->a_numvals = attr_cnt;
atail->a_desc = ad_prev;
atail->a_vals = ch_malloc( (attr_cnt + 1) * sizeof(struct berval));
if( ad_prev->ad_type->sat_equality &&
ad_prev->ad_type->sat_equality->smr_normalize )
atail->a_nvals = ch_malloc( (attr_cnt + 1) * sizeof(struct berval));
else
atail->a_nvals = NULL;
k = i - attr_cnt;
for ( j=0; ja_vals[j] = vals[k];
else
ber_dupbv( atail->a_vals+j, &vals[k] );
vals[k].bv_val = NULL;
if ( atail->a_nvals ) {
atail->a_nvals[j] = nvals[k];
nvals[k].bv_val = NULL;
}
k++;
}
BER_BVZERO( &atail->a_vals[j] );
if ( atail->a_nvals ) {
BER_BVZERO( &atail->a_nvals[j] );
} else {
atail->a_nvals = atail->a_vals;
}
attr_cnt = 0;
/* FIXME: we only need this when migrating from an unsorted DB */
if ( atail->a_desc->ad_type->sat_flags & SLAP_AT_SORTED_VAL ) {
rc = slap_sort_vals( (Modifications *)atail, &text, &j, NULL );
if ( rc == LDAP_SUCCESS ) {
atail->a_flags |= SLAP_ATTR_SORTED_VALS;
} else if ( rc == LDAP_TYPE_OR_VALUE_EXISTS ) {
Debug( LDAP_DEBUG_ANY,
"str2entry: attributeType %s value #%d provided more than once\n",
atail->a_desc->ad_cname.bv_val, j, 0 );
goto fail;
}
}
if ( i == lines ) break;
}
if ( BER_BVISNULL( &vals[i] ) ) {
Debug( LDAP_DEBUG_ANY,
"str2entry: attributeType %s #%d: "
"no value\n",
ad->ad_cname.bv_val, attr_cnt, 0 );
goto fail;
}
if ( ad->ad_type->sat_equality &&
ad->ad_type->sat_equality->smr_normalize )
{
rc = ordered_value_normalize(
SLAP_MR_VALUE_OF_ATTRIBUTE_SYNTAX,
ad,
ad->ad_type->sat_equality,
&vals[i], &nvals[i], NULL );
if ( rc ) {
Debug( LDAP_DEBUG_ANY,
"<= str2entry NULL (smr_normalize %s %d)\n", ad->ad_cname.bv_val, rc, 0 );
goto fail;
}
}
attr_cnt++;
}
}
free( type );
atail->a_next = NULL;
e->e_attrs = ahead.a_next;
Debug(LDAP_DEBUG_TRACE, "<= str2entry(%s) -> 0x%lx\n",
e->e_dn, (unsigned long) e, 0 );
return( e );
fail:
for ( i=0; i ebuf + emaxsize ) { \
ptrdiff_t offset; \
offset = (int) (ecur - ebuf); \
ebuf = ch_realloc( ebuf, \
emaxsize + GRABSIZE ); \
emaxsize += GRABSIZE; \
ecur = ebuf + offset; \
} \
}
/* NOTE: only preserved for binary compatibility */
char *
entry2str(
Entry *e,
int *len )
{
return entry2str_wrap( e, len, LDIF_LINE_WIDTH );
}
char *
entry2str_wrap(
Entry *e,
int *len,
ber_len_t wrap )
{
Attribute *a;
struct berval *bv;
int i;
ber_len_t tmplen;
assert( e != NULL );
/*
* In string format, an entry looks like this:
* dn: \n
* [: \n]*
*/
ecur = ebuf;
/* put the dn */
if ( e->e_dn != NULL ) {
/* put "dn: " */
tmplen = e->e_name.bv_len;
MAKE_SPACE( LDIF_SIZE_NEEDED( 2, tmplen ));
ldif_sput_wrap( &ecur, LDIF_PUT_VALUE, "dn", e->e_dn, tmplen, wrap );
}
/* put the attributes */
for ( a = e->e_attrs; a != NULL; a = a->a_next ) {
/* put ":[:] " line for each value */
for ( i = 0; a->a_vals[i].bv_val != NULL; i++ ) {
bv = &a->a_vals[i];
tmplen = a->a_desc->ad_cname.bv_len;
MAKE_SPACE( LDIF_SIZE_NEEDED( tmplen, bv->bv_len ));
ldif_sput_wrap( &ecur, LDIF_PUT_VALUE,
a->a_desc->ad_cname.bv_val,
bv->bv_val, bv->bv_len, wrap );
}
}
MAKE_SPACE( 1 );
*ecur = '\0';
*len = ecur - ebuf;
return( ebuf );
}
void
entry_clean( Entry *e )
{
/* free an entry structure */
assert( e != NULL );
/* e_private must be freed by the caller */
assert( e->e_private == NULL );
e->e_id = 0;
/* free DNs */
if ( !BER_BVISNULL( &e->e_name ) ) {
free( e->e_name.bv_val );
BER_BVZERO( &e->e_name );
}
if ( !BER_BVISNULL( &e->e_nname ) ) {
free( e->e_nname.bv_val );
BER_BVZERO( &e->e_nname );
}
if ( !BER_BVISNULL( &e->e_bv ) ) {
free( e->e_bv.bv_val );
BER_BVZERO( &e->e_bv );
}
/* free attributes */
if ( e->e_attrs ) {
attrs_free( e->e_attrs );
e->e_attrs = NULL;
}
e->e_ocflags = 0;
}
void
entry_free( Entry *e )
{
entry_clean( e );
ldap_pvt_thread_mutex_lock( &entry_mutex );
e->e_private = entry_list;
entry_list = e;
ldap_pvt_thread_mutex_unlock( &entry_mutex );
}
/* These parameters work well on AMD64 */
#if 0
#define STRIDE 8
#define STRIPE 5
#else
#define STRIDE 1
#define STRIPE 1
#endif
#define STRIDE_FACTOR (STRIDE*STRIPE)
int
entry_prealloc( int num )
{
Entry *e, **prev, *tmp;
slap_list *s;
int i, j;
if (!num) return 0;
#if STRIDE_FACTOR > 1
/* Round up to our stride factor */
num += STRIDE_FACTOR-1;
num /= STRIDE_FACTOR;
num *= STRIDE_FACTOR;
#endif
s = ch_calloc( 1, sizeof(slap_list) + num * sizeof(Entry));
s->next = entry_chunks;
entry_chunks = s;
prev = &tmp;
for (i=0; ie_private;
e += STRIDE;
}
}
*prev = entry_list;
entry_list = (Entry *)(s+1);
return 0;
}
Entry *
entry_alloc( void )
{
Entry *e;
ldap_pvt_thread_mutex_lock( &entry_mutex );
if ( !entry_list )
entry_prealloc( CHUNK_SIZE );
e = entry_list;
entry_list = e->e_private;
e->e_private = NULL;
ldap_pvt_thread_mutex_unlock( &entry_mutex );
return e;
}
/*
* These routines are used only by Backend.
*
* the Entry has three entry points (ways to find things):
*
* by entry e.g., if you already have an entry from the cache
* and want to delete it. (really by entry ptr)
* by dn e.g., when looking for the base object of a search
* by id e.g., for search candidates
*
* these correspond to three different avl trees that are maintained.
*/
int
entry_cmp( Entry *e1, Entry *e2 )
{
return SLAP_PTRCMP( e1, e2 );
}
int
entry_dn_cmp( const void *v_e1, const void *v_e2 )
{
/* compare their normalized UPPERCASED dn's */
const Entry *e1 = v_e1, *e2 = v_e2;
return ber_bvcmp( &e1->e_nname, &e2->e_nname );
}
int
entry_id_cmp( const void *v_e1, const void *v_e2 )
{
const Entry *e1 = v_e1, *e2 = v_e2;
return( e1->e_id < e2->e_id ? -1 : (e1->e_id > e2->e_id ? 1 : 0) );
}
/* This is like a ber_len */
#define entry_lenlen(l) (((l) < 0x80) ? 1 : ((l) < 0x100) ? 2 : \
((l) < 0x10000) ? 3 : ((l) < 0x1000000) ? 4 : 5)
static void
entry_putlen(unsigned char **buf, ber_len_t len)
{
ber_len_t lenlen = entry_lenlen(len);
if (lenlen == 1) {
**buf = (unsigned char) len;
} else {
int i;
**buf = 0x80 | ((unsigned char) lenlen - 1);
for (i=lenlen-1; i>0; i--) {
(*buf)[i] = (unsigned char) len;
len >>= 8;
}
}
*buf += lenlen;
}
static ber_len_t
entry_getlen(unsigned char **buf)
{
ber_len_t len;
int i;
len = *(*buf)++;
if (len <= 0x7f)
return len;
i = len & 0x7f;
len = 0;
for (;i > 0; i--) {
len <<= 8;
len |= *(*buf)++;
}
return len;
}
/* Count up the sizes of the components of an entry */
void entry_partsize(Entry *e, ber_len_t *plen,
int *pnattrs, int *pnvals, int norm)
{
ber_len_t len, dnlen, ndnlen;
int i, nat = 0, nval = 0;
Attribute *a;
dnlen = e->e_name.bv_len;
len = dnlen + 1; /* trailing NUL byte */
len += entry_lenlen(dnlen);
if (norm) {
ndnlen = e->e_nname.bv_len;
len += ndnlen + 1;
len += entry_lenlen(ndnlen);
}
for (a=e->e_attrs; a; a=a->a_next) {
/* For AttributeDesc, we only store the attr name */
nat++;
len += a->a_desc->ad_cname.bv_len+1;
len += entry_lenlen(a->a_desc->ad_cname.bv_len);
for (i=0; a->a_vals[i].bv_val; i++) {
nval++;
len += a->a_vals[i].bv_len + 1;
len += entry_lenlen(a->a_vals[i].bv_len);
}
len += entry_lenlen(i);
nval++; /* empty berval at end */
if (norm && a->a_nvals != a->a_vals) {
for (i=0; a->a_nvals[i].bv_val; i++) {
nval++;
len += a->a_nvals[i].bv_len + 1;
len += entry_lenlen(a->a_nvals[i].bv_len);
}
len += entry_lenlen(i); /* i nvals */
nval++;
} else {
len += entry_lenlen(0); /* 0 nvals */
}
}
len += entry_lenlen(nat);
len += entry_lenlen(nval);
*plen = len;
*pnattrs = nat;
*pnvals = nval;
}
/* Add up the size of the entry for a flattened buffer */
ber_len_t entry_flatsize(Entry *e, int norm)
{
ber_len_t len;
int nattrs, nvals;
entry_partsize(e, &len, &nattrs, &nvals, norm);
len += sizeof(Entry) + (nattrs * sizeof(Attribute)) +
(nvals * sizeof(struct berval));
return len;
}
/* Flatten an Entry into a buffer. The buffer is filled with just the
* strings/bervals of all the entry components. Each field is preceded
* by its length, encoded the way ber_put_len works. Every field is NUL
* terminated. The entire buffer size is precomputed so that a single
* malloc can be performed. The entry size is also recorded,
* to aid in entry_decode.
*/
int entry_encode(Entry *e, struct berval *bv)
{
ber_len_t len, dnlen, ndnlen, i;
int nattrs, nvals;
Attribute *a;
unsigned char *ptr;
Debug( LDAP_DEBUG_TRACE, "=> entry_encode(0x%08lx): %s\n",
(long) e->e_id, e->e_dn, 0 );
dnlen = e->e_name.bv_len;
ndnlen = e->e_nname.bv_len;
entry_partsize( e, &len, &nattrs, &nvals, 1 );
bv->bv_len = len;
bv->bv_val = ch_malloc(len);
ptr = (unsigned char *)bv->bv_val;
entry_putlen(&ptr, nattrs);
entry_putlen(&ptr, nvals);
entry_putlen(&ptr, dnlen);
AC_MEMCPY(ptr, e->e_dn, dnlen);
ptr += dnlen;
*ptr++ = '\0';
entry_putlen(&ptr, ndnlen);
AC_MEMCPY(ptr, e->e_ndn, ndnlen);
ptr += ndnlen;
*ptr++ = '\0';
for (a=e->e_attrs; a; a=a->a_next) {
entry_putlen(&ptr, a->a_desc->ad_cname.bv_len);
AC_MEMCPY(ptr, a->a_desc->ad_cname.bv_val,
a->a_desc->ad_cname.bv_len);
ptr += a->a_desc->ad_cname.bv_len;
*ptr++ = '\0';
if (a->a_vals) {
for (i=0; a->a_vals[i].bv_val; i++);
assert( i == a->a_numvals );
entry_putlen(&ptr, i);
for (i=0; a->a_vals[i].bv_val; i++) {
entry_putlen(&ptr, a->a_vals[i].bv_len);
AC_MEMCPY(ptr, a->a_vals[i].bv_val,
a->a_vals[i].bv_len);
ptr += a->a_vals[i].bv_len;
*ptr++ = '\0';
}
if (a->a_nvals != a->a_vals) {
entry_putlen(&ptr, i);
for (i=0; a->a_nvals[i].bv_val; i++) {
entry_putlen(&ptr, a->a_nvals[i].bv_len);
AC_MEMCPY(ptr, a->a_nvals[i].bv_val,
a->a_nvals[i].bv_len);
ptr += a->a_nvals[i].bv_len;
*ptr++ = '\0';
}
} else {
entry_putlen(&ptr, 0);
}
}
}
Debug( LDAP_DEBUG_TRACE, "<= entry_encode(0x%08lx): %s\n",
(long) e->e_id, e->e_dn, 0 );
return 0;
}
/* Retrieve an Entry that was stored using entry_encode above.
* First entry_header must be called to decode the size of the entry.
* Then a single block of memory must be malloc'd to accomodate the
* bervals and the bulk data. Next the bulk data is retrieved from
* the DB and parsed by entry_decode.
*
* Note: everything is stored in a single contiguous block, so
* you can not free individual attributes or names from this
* structure. Attempting to do so will likely corrupt memory.
*/
int entry_header(EntryHeader *eh)
{
unsigned char *ptr = (unsigned char *)eh->bv.bv_val;
/* Some overlays can create empty entries
* so don't check for zeros here.
*/
eh->nattrs = entry_getlen(&ptr);
eh->nvals = entry_getlen(&ptr);
eh->data = (char *)ptr;
return LDAP_SUCCESS;
}
int
entry_decode_dn( EntryHeader *eh, struct berval *dn, struct berval *ndn )
{
int i;
unsigned char *ptr = (unsigned char *)eh->bv.bv_val;
assert( dn != NULL || ndn != NULL );
ptr = (unsigned char *)eh->data;
i = entry_getlen(&ptr);
if ( dn != NULL ) {
dn->bv_val = (char *) ptr;
dn->bv_len = i;
}
if ( ndn != NULL ) {
ptr += i + 1;
i = entry_getlen(&ptr);
ndn->bv_val = (char *) ptr;
ndn->bv_len = i;
}
Debug( LDAP_DEBUG_TRACE,
"entry_decode_dn: \"%s\"\n",
dn ? dn->bv_val : ndn->bv_val, 0, 0 );
return 0;
}
#ifdef SLAP_ZONE_ALLOC
int entry_decode(EntryHeader *eh, Entry **e, void *ctx)
#else
int entry_decode(EntryHeader *eh, Entry **e)
#endif
{
int i, j, nattrs, nvals;
int rc;
Attribute *a;
Entry *x;
const char *text;
AttributeDescription *ad;
unsigned char *ptr = (unsigned char *)eh->bv.bv_val;
BerVarray bptr;
nattrs = eh->nattrs;
nvals = eh->nvals;
x = entry_alloc();
x->e_attrs = attrs_alloc( nattrs );
ptr = (unsigned char *)eh->data;
i = entry_getlen(&ptr);
x->e_name.bv_val = (char *) ptr;
x->e_name.bv_len = i;
ptr += i+1;
i = entry_getlen(&ptr);
x->e_nname.bv_val = (char *) ptr;
x->e_nname.bv_len = i;
ptr += i+1;
Debug( LDAP_DEBUG_TRACE,
"entry_decode: \"%s\"\n",
x->e_dn, 0, 0 );
x->e_bv = eh->bv;
a = x->e_attrs;
bptr = (BerVarray)eh->bv.bv_val;
while ((i = entry_getlen(&ptr))) {
struct berval bv;
bv.bv_len = i;
bv.bv_val = (char *) ptr;
ad = NULL;
rc = slap_bv2ad( &bv, &ad, &text );
if( rc != LDAP_SUCCESS ) {
Debug( LDAP_DEBUG_TRACE,
"<= entry_decode: str2ad(%s): %s\n", ptr, text, 0 );
rc = slap_bv2undef_ad( &bv, &ad, &text, 0 );
if( rc != LDAP_SUCCESS ) {
Debug( LDAP_DEBUG_ANY,
"<= entry_decode: slap_str2undef_ad(%s): %s\n",
ptr, text, 0 );
return rc;
}
}
ptr += i + 1;
a->a_desc = ad;
a->a_flags = SLAP_ATTR_DONT_FREE_DATA | SLAP_ATTR_DONT_FREE_VALS;
j = entry_getlen(&ptr);
a->a_numvals = j;
a->a_vals = bptr;
while (j) {
i = entry_getlen(&ptr);
bptr->bv_len = i;
bptr->bv_val = (char *)ptr;
ptr += i+1;
bptr++;
j--;
}
bptr->bv_val = NULL;
bptr->bv_len = 0;
bptr++;
j = entry_getlen(&ptr);
if (j) {
a->a_nvals = bptr;
while (j) {
i = entry_getlen(&ptr);
bptr->bv_len = i;
bptr->bv_val = (char *)ptr;
ptr += i+1;
bptr++;
j--;
}
bptr->bv_val = NULL;
bptr->bv_len = 0;
bptr++;
} else {
a->a_nvals = a->a_vals;
}
/* FIXME: This is redundant once a sorted entry is saved into the DB */
if ( a->a_desc->ad_type->sat_flags & SLAP_AT_SORTED_VAL ) {
rc = slap_sort_vals( (Modifications *)a, &text, &j, NULL );
if ( rc == LDAP_SUCCESS ) {
a->a_flags |= SLAP_ATTR_SORTED_VALS;
} else if ( rc == LDAP_TYPE_OR_VALUE_EXISTS ) {
/* should never happen */
Debug( LDAP_DEBUG_ANY,
"entry_decode: attributeType %s value #%d provided more than once\n",
a->a_desc->ad_cname.bv_val, j, 0 );
return rc;
}
}
a = a->a_next;
nattrs--;
if ( !nattrs )
break;
}
Debug(LDAP_DEBUG_TRACE, "<= entry_decode(%s)\n",
x->e_dn, 0, 0 );
*e = x;
return 0;
}
Entry *
entry_dup2( Entry *dest, Entry *source )
{
assert( dest != NULL );
assert( source != NULL );
assert( dest->e_private == NULL );
dest->e_id = source->e_id;
ber_dupbv( &dest->e_name, &source->e_name );
ber_dupbv( &dest->e_nname, &source->e_nname );
dest->e_attrs = attrs_dup( source->e_attrs );
dest->e_ocflags = source->e_ocflags;
return dest;
}
Entry *
entry_dup( Entry *e )
{
return entry_dup2( entry_alloc(), e );
}
#if 1
/* Duplicates an entry using a single malloc. Saves CPU time, increases
* heap usage because a single large malloc is harder to satisfy than
* lots of small ones, and the freed space isn't as easily reusable.
*
* Probably not worth using this function.
*/
Entry *entry_dup_bv( Entry *e )
{
ber_len_t len;
int nattrs, nvals;
Entry *ret;
struct berval *bvl;
char *ptr;
Attribute *src, *dst;
ret = entry_alloc();
entry_partsize(e, &len, &nattrs, &nvals, 1);
ret->e_id = e->e_id;
ret->e_attrs = attrs_alloc( nattrs );
ret->e_ocflags = e->e_ocflags;
ret->e_bv.bv_len = len + nvals * sizeof(struct berval);
ret->e_bv.bv_val = ch_malloc( ret->e_bv.bv_len );
bvl = (struct berval *)ret->e_bv.bv_val;
ptr = (char *)(bvl + nvals);
ret->e_name.bv_len = e->e_name.bv_len;
ret->e_name.bv_val = ptr;
AC_MEMCPY( ptr, e->e_name.bv_val, e->e_name.bv_len );
ptr += e->e_name.bv_len;
*ptr++ = '\0';
ret->e_nname.bv_len = e->e_nname.bv_len;
ret->e_nname.bv_val = ptr;
AC_MEMCPY( ptr, e->e_nname.bv_val, e->e_nname.bv_len );
ptr += e->e_name.bv_len;
*ptr++ = '\0';
dst = ret->e_attrs;
for (src = e->e_attrs; src; src=src->a_next,dst=dst->a_next ) {
int i;
dst->a_desc = src->a_desc;
dst->a_flags = SLAP_ATTR_DONT_FREE_DATA | SLAP_ATTR_DONT_FREE_VALS;
dst->a_vals = bvl;
dst->a_numvals = src->a_numvals;
for ( i=0; src->a_vals[i].bv_val; i++ ) {
bvl->bv_len = src->a_vals[i].bv_len;
bvl->bv_val = ptr;
AC_MEMCPY( ptr, src->a_vals[i].bv_val, bvl->bv_len );
ptr += bvl->bv_len;
*ptr++ = '\0';
bvl++;
}
BER_BVZERO(bvl);
bvl++;
if ( src->a_vals != src->a_nvals ) {
dst->a_nvals = bvl;
for ( i=0; src->a_nvals[i].bv_val; i++ ) {
bvl->bv_len = src->a_nvals[i].bv_len;
bvl->bv_val = ptr;
AC_MEMCPY( ptr, src->a_nvals[i].bv_val, bvl->bv_len );
ptr += bvl->bv_len;
*ptr++ = '\0';
bvl++;
}
BER_BVZERO(bvl);
bvl++;
}
}
return ret;
}
#endif