/* $NetBSD: idl.c,v 1.1.1.3.6.1 2019/08/10 06:17:18 martin Exp $ */
/* idl.c - ldap id list handling routines */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 2000-2019 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
#include
__RCSID("$NetBSD: idl.c,v 1.1.1.3.6.1 2019/08/10 06:17:18 martin Exp $");
#include "portable.h"
#include
#include
#include "back-mdb.h"
#include "idl.h"
#define IDL_MAX(x,y) ( (x) > (y) ? (x) : (y) )
#define IDL_MIN(x,y) ( (x) < (y) ? (x) : (y) )
#define IDL_CMP(x,y) ( (x) < (y) ? -1 : (x) > (y) )
#if IDL_DEBUG > 0
static void idl_check( ID *ids )
{
if( MDB_IDL_IS_RANGE( ids ) ) {
assert( MDB_IDL_RANGE_FIRST(ids) <= MDB_IDL_RANGE_LAST(ids) );
} else {
ID i;
for( i=1; i < ids[0]; i++ ) {
assert( ids[i+1] > ids[i] );
}
}
}
#if IDL_DEBUG > 1
static void idl_dump( ID *ids )
{
if( MDB_IDL_IS_RANGE( ids ) ) {
Debug( LDAP_DEBUG_ANY,
"IDL: range ( %ld - %ld )\n",
(long) MDB_IDL_RANGE_FIRST( ids ),
(long) MDB_IDL_RANGE_LAST( ids ) );
} else {
ID i;
Debug( LDAP_DEBUG_ANY, "IDL: size %ld", (long) ids[0], 0, 0 );
for( i=1; i<=ids[0]; i++ ) {
if( i % 16 == 1 ) {
Debug( LDAP_DEBUG_ANY, "\n", 0, 0, 0 );
}
Debug( LDAP_DEBUG_ANY, " %02lx", (long) ids[i], 0, 0 );
}
Debug( LDAP_DEBUG_ANY, "\n", 0, 0, 0 );
}
idl_check( ids );
}
#endif /* IDL_DEBUG > 1 */
#endif /* IDL_DEBUG > 0 */
unsigned mdb_idl_search( ID *ids, ID id )
{
#define IDL_BINARY_SEARCH 1
#ifdef IDL_BINARY_SEARCH
/*
* binary search of id in ids
* if found, returns position of id
* if not found, returns first postion greater than id
*/
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = ids[0];
#if IDL_DEBUG > 0
idl_check( ids );
#endif
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = IDL_CMP( id, ids[cursor] );
if( val < 0 ) {
n = pivot;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
return cursor;
}
}
if( val > 0 ) {
++cursor;
}
return cursor;
#else
/* (reverse) linear search */
int i;
#if IDL_DEBUG > 0
idl_check( ids );
#endif
for( i=ids[0]; i; i-- ) {
if( id > ids[i] ) {
break;
}
}
return i+1;
#endif
}
int mdb_idl_insert( ID *ids, ID id )
{
unsigned x;
#if IDL_DEBUG > 1
Debug( LDAP_DEBUG_ANY, "insert: %04lx at %d\n", (long) id, x, 0 );
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
if (MDB_IDL_IS_RANGE( ids )) {
/* if already in range, treat as a dup */
if (id >= MDB_IDL_RANGE_FIRST(ids) && id <= MDB_IDL_RANGE_LAST(ids))
return -1;
if (id < MDB_IDL_RANGE_FIRST(ids))
ids[1] = id;
else if (id > MDB_IDL_RANGE_LAST(ids))
ids[2] = id;
return 0;
}
x = mdb_idl_search( ids, id );
assert( x > 0 );
if( x < 1 ) {
/* internal error */
return -2;
}
if ( x <= ids[0] && ids[x] == id ) {
/* duplicate */
return -1;
}
if ( ++ids[0] >= MDB_IDL_DB_MAX ) {
if( id < ids[1] ) {
ids[1] = id;
ids[2] = ids[ids[0]-1];
} else if ( ids[ids[0]-1] < id ) {
ids[2] = id;
} else {
ids[2] = ids[ids[0]-1];
}
ids[0] = NOID;
} else {
/* insert id */
AC_MEMCPY( &ids[x+1], &ids[x], (ids[0]-x) * sizeof(ID) );
ids[x] = id;
}
#if IDL_DEBUG > 1
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
return 0;
}
static int mdb_idl_delete( ID *ids, ID id )
{
unsigned x;
#if IDL_DEBUG > 1
Debug( LDAP_DEBUG_ANY, "delete: %04lx at %d\n", (long) id, x, 0 );
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
if (MDB_IDL_IS_RANGE( ids )) {
/* If deleting a range boundary, adjust */
if ( ids[1] == id )
ids[1]++;
else if ( ids[2] == id )
ids[2]--;
/* deleting from inside a range is a no-op */
/* If the range has collapsed, re-adjust */
if ( ids[1] > ids[2] )
ids[0] = 0;
else if ( ids[1] == ids[2] )
ids[1] = 1;
return 0;
}
x = mdb_idl_search( ids, id );
assert( x > 0 );
if( x <= 0 ) {
/* internal error */
return -2;
}
if( x > ids[0] || ids[x] != id ) {
/* not found */
return -1;
} else if ( --ids[0] == 0 ) {
if( x != 1 ) {
return -3;
}
} else {
AC_MEMCPY( &ids[x], &ids[x+1], (1+ids[0]-x) * sizeof(ID) );
}
#if IDL_DEBUG > 1
idl_dump( ids );
#elif IDL_DEBUG > 0
idl_check( ids );
#endif
return 0;
}
static char *
mdb_show_key(
char *buf,
void *val,
size_t len )
{
if ( len == 4 /* LUTIL_HASH_BYTES */ ) {
unsigned char *c = val;
sprintf( buf, "[%02x%02x%02x%02x]", c[0], c[1], c[2], c[3] );
return buf;
} else {
return val;
}
}
int
mdb_idl_fetch_key(
BackendDB *be,
MDB_txn *txn,
MDB_dbi dbi,
MDB_val *key,
ID *ids,
MDB_cursor **saved_cursor,
int get_flag )
{
MDB_val data, key2, *kptr;
MDB_cursor *cursor;
ID *i;
size_t len;
int rc;
MDB_cursor_op opflag;
char keybuf[16];
Debug( LDAP_DEBUG_ARGS,
"mdb_idl_fetch_key: %s\n",
mdb_show_key( keybuf, key->mv_data, key->mv_size ), 0, 0 );
assert( ids != NULL );
if ( saved_cursor && *saved_cursor ) {
opflag = MDB_NEXT;
} else if ( get_flag == LDAP_FILTER_GE ) {
opflag = MDB_SET_RANGE;
} else if ( get_flag == LDAP_FILTER_LE ) {
opflag = MDB_FIRST;
} else {
opflag = MDB_SET;
}
/* If we're not reusing an existing cursor, get a new one */
if( opflag != MDB_NEXT ) {
rc = mdb_cursor_open( txn, dbi, &cursor );
if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> mdb_idl_fetch_key: "
"cursor failed: %s (%d)\n", mdb_strerror(rc), rc, 0 );
return rc;
}
} else {
cursor = *saved_cursor;
}
/* If this is a LE lookup, save original key so we can determine
* when to stop. If this is a GE lookup, save the key since it
* will be overwritten.
*/
if ( get_flag == LDAP_FILTER_LE || get_flag == LDAP_FILTER_GE ) {
key2.mv_data = keybuf;
key2.mv_size = key->mv_size;
AC_MEMCPY( keybuf, key->mv_data, key->mv_size );
kptr = &key2;
} else {
kptr = key;
}
len = key->mv_size;
rc = mdb_cursor_get( cursor, kptr, &data, opflag );
/* skip presence key on range inequality lookups */
while (rc == 0 && kptr->mv_size != len) {
rc = mdb_cursor_get( cursor, kptr, &data, MDB_NEXT_NODUP );
}
/* If we're doing a LE compare and the new key is greater than
* our search key, we're done
*/
if (rc == 0 && get_flag == LDAP_FILTER_LE && memcmp( kptr->mv_data,
key->mv_data, key->mv_size ) > 0 ) {
rc = MDB_NOTFOUND;
}
if (rc == 0) {
i = ids+1;
rc = mdb_cursor_get( cursor, key, &data, MDB_GET_MULTIPLE );
while (rc == 0) {
memcpy( i, data.mv_data, data.mv_size );
i += data.mv_size / sizeof(ID);
rc = mdb_cursor_get( cursor, key, &data, MDB_NEXT_MULTIPLE );
}
if ( rc == MDB_NOTFOUND ) rc = 0;
ids[0] = i - &ids[1];
/* On disk, a range is denoted by 0 in the first element */
if (ids[1] == 0) {
if (ids[0] != MDB_IDL_RANGE_SIZE) {
Debug( LDAP_DEBUG_ANY, "=> mdb_idl_fetch_key: "
"range size mismatch: expected %d, got %ld\n",
MDB_IDL_RANGE_SIZE, ids[0], 0 );
mdb_cursor_close( cursor );
return -1;
}
MDB_IDL_RANGE( ids, ids[2], ids[3] );
}
data.mv_size = MDB_IDL_SIZEOF(ids);
}
if ( saved_cursor && rc == 0 ) {
if ( !*saved_cursor )
*saved_cursor = cursor;
}
else
mdb_cursor_close( cursor );
if( rc == MDB_NOTFOUND ) {
return rc;
} else if( rc != 0 ) {
Debug( LDAP_DEBUG_ANY, "=> mdb_idl_fetch_key: "
"get failed: %s (%d)\n",
mdb_strerror(rc), rc, 0 );
return rc;
} else if ( data.mv_size == 0 || data.mv_size % sizeof( ID ) ) {
/* size not multiple of ID size */
Debug( LDAP_DEBUG_ANY, "=> mdb_idl_fetch_key: "
"odd size: expected %ld multiple, got %ld\n",
(long) sizeof( ID ), (long) data.mv_size, 0 );
return -1;
} else if ( data.mv_size != MDB_IDL_SIZEOF(ids) ) {
/* size mismatch */
Debug( LDAP_DEBUG_ANY, "=> mdb_idl_fetch_key: "
"get size mismatch: expected %ld, got %ld\n",
(long) ((1 + ids[0]) * sizeof( ID )), (long) data.mv_size, 0 );
return -1;
}
return rc;
}
int
mdb_idl_insert_keys(
BackendDB *be,
MDB_cursor *cursor,
struct berval *keys,
ID id )
{
struct mdb_info *mdb = be->be_private;
MDB_val key, data;
ID lo, hi, *i;
char *err;
int rc = 0, k;
unsigned int flag = MDB_NODUPDATA;
#ifndef MISALIGNED_OK
int kbuf[2];
#endif
{
char buf[16];
Debug( LDAP_DEBUG_ARGS,
"mdb_idl_insert_keys: %lx %s\n",
(long) id, mdb_show_key( buf, keys->bv_val, keys->bv_len ), 0 );
}
assert( id != NOID );
#ifndef MISALIGNED_OK
if (keys[0].bv_len & ALIGNER)
kbuf[1] = 0;
#endif
for ( k=0; keys[k].bv_val; k++ ) {
/* Fetch the first data item for this key, to see if it
* exists and if it's a range.
*/
#ifndef MISALIGNED_OK
if (keys[k].bv_len & ALIGNER) {
key.mv_size = sizeof(kbuf);
key.mv_data = kbuf;
memcpy(key.mv_data, keys[k].bv_val, keys[k].bv_len);
} else
#endif
{
key.mv_size = keys[k].bv_len;
key.mv_data = keys[k].bv_val;
}
rc = mdb_cursor_get( cursor, &key, &data, MDB_SET );
err = "c_get";
if ( rc == 0 ) {
i = data.mv_data;
memcpy(&lo, data.mv_data, sizeof(ID));
if ( lo != 0 ) {
/* not a range, count the number of items */
size_t count;
rc = mdb_cursor_count( cursor, &count );
if ( rc != 0 ) {
err = "c_count";
goto fail;
}
if ( count >= MDB_IDL_DB_MAX ) {
/* No room, convert to a range */
lo = *i;
rc = mdb_cursor_get( cursor, &key, &data, MDB_LAST_DUP );
if ( rc != 0 && rc != MDB_NOTFOUND ) {
err = "c_get last_dup";
goto fail;
}
i = data.mv_data;
hi = *i;
/* Update hi/lo if needed */
if ( id < lo ) {
lo = id;
} else if ( id > hi ) {
hi = id;
}
/* delete the old key */
rc = mdb_cursor_del( cursor, MDB_NODUPDATA );
if ( rc != 0 ) {
err = "c_del dups";
goto fail;
}
/* Store the range */
data.mv_size = sizeof(ID);
data.mv_data = &id;
id = 0;
rc = mdb_cursor_put( cursor, &key, &data, 0 );
if ( rc != 0 ) {
err = "c_put range";
goto fail;
}
id = lo;
rc = mdb_cursor_put( cursor, &key, &data, 0 );
if ( rc != 0 ) {
err = "c_put lo";
goto fail;
}
id = hi;
rc = mdb_cursor_put( cursor, &key, &data, 0 );
if ( rc != 0 ) {
err = "c_put hi";
goto fail;
}
} else {
/* There's room, just store it */
if (id == mdb->mi_nextid)
flag |= MDB_APPENDDUP;
goto put1;
}
} else {
/* It's a range, see if we need to rewrite
* the boundaries
*/
lo = i[1];
hi = i[2];
if ( id < lo || id > hi ) {
/* position on lo */
rc = mdb_cursor_get( cursor, &key, &data, MDB_NEXT_DUP );
if ( rc != 0 ) {
err = "c_get lo";
goto fail;
}
if ( id > hi ) {
/* position on hi */
rc = mdb_cursor_get( cursor, &key, &data, MDB_NEXT_DUP );
if ( rc != 0 ) {
err = "c_get hi";
goto fail;
}
}
data.mv_size = sizeof(ID);
data.mv_data = &id;
/* Replace the current lo/hi */
rc = mdb_cursor_put( cursor, &key, &data, MDB_CURRENT );
if ( rc != 0 ) {
err = "c_put lo/hi";
goto fail;
}
}
}
} else if ( rc == MDB_NOTFOUND ) {
flag &= ~MDB_APPENDDUP;
put1: data.mv_data = &id;
data.mv_size = sizeof(ID);
rc = mdb_cursor_put( cursor, &key, &data, flag );
/* Don't worry if it's already there */
if ( rc == MDB_KEYEXIST )
rc = 0;
if ( rc ) {
err = "c_put id";
goto fail;
}
} else {
/* initial c_get failed, nothing was done */
fail:
Debug( LDAP_DEBUG_ANY, "=> mdb_idl_insert_keys: "
"%s failed: %s (%d)\n", err, mdb_strerror(rc), rc );
break;
}
}
return rc;
}
int
mdb_idl_delete_keys(
BackendDB *be,
MDB_cursor *cursor,
struct berval *keys,
ID id )
{
int rc = 0, k;
MDB_val key, data;
ID lo, hi, tmp, *i;
char *err;
#ifndef MISALIGNED_OK
int kbuf[2];
#endif
{
char buf[16];
Debug( LDAP_DEBUG_ARGS,
"mdb_idl_delete_keys: %lx %s\n",
(long) id, mdb_show_key( buf, keys->bv_val, keys->bv_len ), 0 );
}
assert( id != NOID );
#ifndef MISALIGNED_OK
if (keys[0].bv_len & ALIGNER)
kbuf[1] = 0;
#endif
for ( k=0; keys[k].bv_val; k++) {
/* Fetch the first data item for this key, to see if it
* exists and if it's a range.
*/
#ifndef MISALIGNED_OK
if (keys[k].bv_len & ALIGNER) {
key.mv_size = sizeof(kbuf);
key.mv_data = kbuf;
memcpy(key.mv_data, keys[k].bv_val, keys[k].bv_len);
} else
#endif
{
key.mv_size = keys[k].bv_len;
key.mv_data = keys[k].bv_val;
}
rc = mdb_cursor_get( cursor, &key, &data, MDB_SET );
err = "c_get";
if ( rc == 0 ) {
memcpy( &tmp, data.mv_data, sizeof(ID) );
i = data.mv_data;
if ( tmp != 0 ) {
/* Not a range, just delete it */
data.mv_data = &id;
rc = mdb_cursor_get( cursor, &key, &data, MDB_GET_BOTH );
if ( rc != 0 ) {
err = "c_get id";
goto fail;
}
rc = mdb_cursor_del( cursor, 0 );
if ( rc != 0 ) {
err = "c_del id";
goto fail;
}
} else {
/* It's a range, see if we need to rewrite
* the boundaries
*/
lo = i[1];
hi = i[2];
if ( id == lo || id == hi ) {
ID lo2 = lo, hi2 = hi;
if ( id == lo ) {
lo2++;
} else if ( id == hi ) {
hi2--;
}
if ( lo2 >= hi2 ) {
/* The range has collapsed... */
rc = mdb_cursor_del( cursor, MDB_NODUPDATA );
if ( rc != 0 ) {
err = "c_del dup";
goto fail;
}
} else {
/* position on lo */
rc = mdb_cursor_get( cursor, &key, &data, MDB_NEXT_DUP );
if ( id == lo )
data.mv_data = &lo2;
else {
/* position on hi */
rc = mdb_cursor_get( cursor, &key, &data, MDB_NEXT_DUP );
data.mv_data = &hi2;
}
/* Replace the current lo/hi */
data.mv_size = sizeof(ID);
rc = mdb_cursor_put( cursor, &key, &data, MDB_CURRENT );
if ( rc != 0 ) {
err = "c_put lo/hi";
goto fail;
}
}
}
}
} else {
/* initial c_get failed, nothing was done */
fail:
if ( rc == MDB_NOTFOUND )
rc = 0;
if ( rc ) {
Debug( LDAP_DEBUG_ANY, "=> mdb_idl_delete_key: "
"%s failed: %s (%d)\n", err, mdb_strerror(rc), rc );
break;
}
}
}
return rc;
}
/*
* idl_intersection - return a = a intersection b
*/
int
mdb_idl_intersection(
ID *a,
ID *b )
{
ID ida, idb;
ID idmax, idmin;
ID cursora = 0, cursorb = 0, cursorc;
int swap = 0;
if ( MDB_IDL_IS_ZERO( a ) || MDB_IDL_IS_ZERO( b ) ) {
a[0] = 0;
return 0;
}
idmin = IDL_MAX( MDB_IDL_FIRST(a), MDB_IDL_FIRST(b) );
idmax = IDL_MIN( MDB_IDL_LAST(a), MDB_IDL_LAST(b) );
if ( idmin > idmax ) {
a[0] = 0;
return 0;
} else if ( idmin == idmax ) {
a[0] = 1;
a[1] = idmin;
return 0;
}
if ( MDB_IDL_IS_RANGE( a ) ) {
if ( MDB_IDL_IS_RANGE(b) ) {
/* If both are ranges, just shrink the boundaries */
a[1] = idmin;
a[2] = idmax;
return 0;
} else {
/* Else swap so that b is the range, a is a list */
ID *tmp = a;
a = b;
b = tmp;
swap = 1;
}
}
/* If a range completely covers the list, the result is
* just the list.
*/
if ( MDB_IDL_IS_RANGE( b )
&& MDB_IDL_RANGE_FIRST( b ) <= MDB_IDL_FIRST( a )
&& MDB_IDL_RANGE_LAST( b ) >= MDB_IDL_LLAST( a ) ) {
goto done;
}
/* Fine, do the intersection one element at a time.
* First advance to idmin in both IDLs.
*/
cursora = cursorb = idmin;
ida = mdb_idl_first( a, &cursora );
idb = mdb_idl_first( b, &cursorb );
cursorc = 0;
while( ida <= idmax || idb <= idmax ) {
if( ida == idb ) {
a[++cursorc] = ida;
ida = mdb_idl_next( a, &cursora );
idb = mdb_idl_next( b, &cursorb );
} else if ( ida < idb ) {
ida = mdb_idl_next( a, &cursora );
} else {
idb = mdb_idl_next( b, &cursorb );
}
}
a[0] = cursorc;
done:
if (swap)
MDB_IDL_CPY( b, a );
return 0;
}
/*
* idl_union - return a = a union b
*/
int
mdb_idl_union(
ID *a,
ID *b )
{
ID ida, idb;
ID cursora = 0, cursorb = 0, cursorc;
if ( MDB_IDL_IS_ZERO( b ) ) {
return 0;
}
if ( MDB_IDL_IS_ZERO( a ) ) {
MDB_IDL_CPY( a, b );
return 0;
}
if ( MDB_IDL_IS_RANGE( a ) || MDB_IDL_IS_RANGE(b) ) {
over: ida = IDL_MIN( MDB_IDL_FIRST(a), MDB_IDL_FIRST(b) );
idb = IDL_MAX( MDB_IDL_LAST(a), MDB_IDL_LAST(b) );
a[0] = NOID;
a[1] = ida;
a[2] = idb;
return 0;
}
ida = mdb_idl_first( a, &cursora );
idb = mdb_idl_first( b, &cursorb );
cursorc = b[0];
/* The distinct elements of a are cat'd to b */
while( ida != NOID || idb != NOID ) {
if ( ida < idb ) {
if( ++cursorc > MDB_IDL_UM_MAX ) {
goto over;
}
b[cursorc] = ida;
ida = mdb_idl_next( a, &cursora );
} else {
if ( ida == idb )
ida = mdb_idl_next( a, &cursora );
idb = mdb_idl_next( b, &cursorb );
}
}
/* b is copied back to a in sorted order */
a[0] = cursorc;
cursora = 1;
cursorb = 1;
cursorc = b[0]+1;
while (cursorb <= b[0] || cursorc <= a[0]) {
if (cursorc > a[0])
idb = NOID;
else
idb = b[cursorc];
if (cursorb <= b[0] && b[cursorb] < idb)
a[cursora++] = b[cursorb++];
else {
a[cursora++] = idb;
cursorc++;
}
}
return 0;
}
#if 0
/*
* mdb_idl_notin - return a intersection ~b (or a minus b)
*/
int
mdb_idl_notin(
ID *a,
ID *b,
ID *ids )
{
ID ida, idb;
ID cursora = 0, cursorb = 0;
if( MDB_IDL_IS_ZERO( a ) ||
MDB_IDL_IS_ZERO( b ) ||
MDB_IDL_IS_RANGE( b ) )
{
MDB_IDL_CPY( ids, a );
return 0;
}
if( MDB_IDL_IS_RANGE( a ) ) {
MDB_IDL_CPY( ids, a );
return 0;
}
ida = mdb_idl_first( a, &cursora ),
idb = mdb_idl_first( b, &cursorb );
ids[0] = 0;
while( ida != NOID ) {
if ( idb == NOID ) {
/* we could shortcut this */
ids[++ids[0]] = ida;
ida = mdb_idl_next( a, &cursora );
} else if ( ida < idb ) {
ids[++ids[0]] = ida;
ida = mdb_idl_next( a, &cursora );
} else if ( ida > idb ) {
idb = mdb_idl_next( b, &cursorb );
} else {
ida = mdb_idl_next( a, &cursora );
idb = mdb_idl_next( b, &cursorb );
}
}
return 0;
}
#endif
ID mdb_idl_first( ID *ids, ID *cursor )
{
ID pos;
if ( ids[0] == 0 ) {
*cursor = NOID;
return NOID;
}
if ( MDB_IDL_IS_RANGE( ids ) ) {
if( *cursor < ids[1] ) {
*cursor = ids[1];
}
return *cursor;
}
if ( *cursor == 0 )
pos = 1;
else
pos = mdb_idl_search( ids, *cursor );
if( pos > ids[0] ) {
return NOID;
}
*cursor = pos;
return ids[pos];
}
ID mdb_idl_next( ID *ids, ID *cursor )
{
if ( MDB_IDL_IS_RANGE( ids ) ) {
if( ids[2] < ++(*cursor) ) {
return NOID;
}
return *cursor;
}
if ( ++(*cursor) <= ids[0] ) {
return ids[*cursor];
}
return NOID;
}
/* Add one ID to an unsorted list. We ensure that the first element is the
* minimum and the last element is the maximum, for fast range compaction.
* this means IDLs up to length 3 are always sorted...
*/
int mdb_idl_append_one( ID *ids, ID id )
{
if (MDB_IDL_IS_RANGE( ids )) {
/* if already in range, treat as a dup */
if (id >= MDB_IDL_RANGE_FIRST(ids) && id <= MDB_IDL_RANGE_LAST(ids))
return -1;
if (id < MDB_IDL_RANGE_FIRST(ids))
ids[1] = id;
else if (id > MDB_IDL_RANGE_LAST(ids))
ids[2] = id;
return 0;
}
if ( ids[0] ) {
ID tmp;
if (id < ids[1]) {
tmp = ids[1];
ids[1] = id;
id = tmp;
}
if ( ids[0] > 1 && id < ids[ids[0]] ) {
tmp = ids[ids[0]];
ids[ids[0]] = id;
id = tmp;
}
}
ids[0]++;
if ( ids[0] >= MDB_IDL_UM_MAX ) {
ids[0] = NOID;
ids[2] = id;
} else {
ids[ids[0]] = id;
}
return 0;
}
/* Append sorted list b to sorted list a. The result is unsorted but
* a[1] is the min of the result and a[a[0]] is the max.
*/
int mdb_idl_append( ID *a, ID *b )
{
ID ida, idb, tmp, swap = 0;
if ( MDB_IDL_IS_ZERO( b ) ) {
return 0;
}
if ( MDB_IDL_IS_ZERO( a ) ) {
MDB_IDL_CPY( a, b );
return 0;
}
ida = MDB_IDL_LAST( a );
idb = MDB_IDL_LAST( b );
if ( MDB_IDL_IS_RANGE( a ) || MDB_IDL_IS_RANGE(b) ||
a[0] + b[0] >= MDB_IDL_UM_MAX ) {
a[2] = IDL_MAX( ida, idb );
a[1] = IDL_MIN( a[1], b[1] );
a[0] = NOID;
return 0;
}
if ( b[0] > 1 && ida > idb ) {
swap = idb;
a[a[0]] = idb;
b[b[0]] = ida;
}
if ( b[1] < a[1] ) {
tmp = a[1];
a[1] = b[1];
} else {
tmp = b[1];
}
a[0]++;
a[a[0]] = tmp;
if ( b[0] > 1 ) {
int i = b[0] - 1;
AC_MEMCPY(a+a[0]+1, b+2, i * sizeof(ID));
a[0] += i;
}
if ( swap ) {
b[b[0]] = swap;
}
return 0;
}
#if 1
/* Quicksort + Insertion sort for small arrays */
#define SMALL 8
#define SWAP(a,b) itmp=(a);(a)=(b);(b)=itmp
void
mdb_idl_sort( ID *ids, ID *tmp )
{
int *istack = (int *)tmp; /* Private stack, not used by caller */
int i,j,k,l,ir,jstack;
ID a, itmp;
if ( MDB_IDL_IS_RANGE( ids ))
return;
ir = ids[0];
l = 1;
jstack = 0;
for(;;) {
if (ir - l < SMALL) { /* Insertion sort */
for (j=l+1;j<=ir;j++) {
a = ids[j];
for (i=j-1;i>=1;i--) {
if (ids[i] <= a) break;
ids[i+1] = ids[i];
}
ids[i+1] = a;
}
if (jstack == 0) break;
ir = istack[jstack--];
l = istack[jstack--];
} else {
k = (l + ir) >> 1; /* Choose median of left, center, right */
SWAP(ids[k], ids[l+1]);
if (ids[l] > ids[ir]) {
SWAP(ids[l], ids[ir]);
}
if (ids[l+1] > ids[ir]) {
SWAP(ids[l+1], ids[ir]);
}
if (ids[l] > ids[l+1]) {
SWAP(ids[l], ids[l+1]);
}
i = l+1;
j = ir;
a = ids[l+1];
for(;;) {
do i++; while(ids[i] < a);
do j--; while(ids[j] > a);
if (j < i) break;
SWAP(ids[i],ids[j]);
}
ids[l+1] = ids[j];
ids[j] = a;
jstack += 2;
if (ir-i+1 >= j-l) {
istack[jstack] = ir;
istack[jstack-1] = i;
ir = j-1;
} else {
istack[jstack] = j-1;
istack[jstack-1] = l;
l = i;
}
}
}
}
#else
/* 8 bit Radix sort + insertion sort
*
* based on code from http://www.cubic.org/docs/radix.htm
* with improvements by ebackes@symas.com and hyc@symas.com
*
* This code is O(n) but has a relatively high constant factor. For lists
* up to ~50 Quicksort is slightly faster; up to ~100 they are even.
* Much faster than quicksort for lists longer than ~100. Insertion
* sort is actually superior for lists <50.
*/
#define BUCKETS (1<<8)
#define SMALL 50
void
mdb_idl_sort( ID *ids, ID *tmp )
{
int count, soft_limit, phase = 0, size = ids[0];
ID *idls[2];
unsigned char *maxv = (unsigned char *)&ids[size];
if ( MDB_IDL_IS_RANGE( ids ))
return;
/* Use insertion sort for small lists */
if ( size <= SMALL ) {
int i,j;
ID a;
for (j=1;j<=size;j++) {
a = ids[j];
for (i=j-1;i>=1;i--) {
if (ids[i] <= a) break;
ids[i+1] = ids[i];
}
ids[i+1] = a;
}
return;
}
tmp[0] = size;
idls[0] = ids;
idls[1] = tmp;
#if BYTE_ORDER == BIG_ENDIAN
for (soft_limit = 0; !maxv[soft_limit]; soft_limit++);
#else
for (soft_limit = sizeof(ID)-1; !maxv[soft_limit]; soft_limit--);
#endif
for (
#if BYTE_ORDER == BIG_ENDIAN
count = sizeof(ID)-1; count >= soft_limit; --count
#else
count = 0; count <= soft_limit; ++count
#endif
) {
unsigned int num[BUCKETS], * np, n, sum;
int i;
ID *sp, *source, *dest;
unsigned char *bp, *source_start;
source = idls[phase]+1;
dest = idls[phase^1]+1;
source_start = ((unsigned char *) source) + count;
np = num;
for ( i = BUCKETS; i > 0; --i ) *np++ = 0;
/* count occurences of every byte value */
bp = source_start;
for ( i = size; i > 0; --i, bp += sizeof(ID) )
num[*bp]++;
/* transform count into index by summing elements and storing
* into same array
*/
sum = 0;
np = num;
for ( i = BUCKETS; i > 0; --i ) {
n = *np;
*np++ = sum;
sum += n;
}
/* fill dest with the right values in the right place */
bp = source_start;
sp = source;
for ( i = size; i > 0; --i, bp += sizeof(ID) ) {
np = num + *bp;
dest[*np] = *sp++;
++(*np);
}
phase ^= 1;
}
/* copy back from temp if needed */
if ( phase ) {
ids++; tmp++;
for ( count = 0; count < size; ++count )
*ids++ = *tmp++;
}
}
#endif /* Quick vs Radix */
unsigned mdb_id2l_search( ID2L ids, ID id )
{
/*
* binary search of id in ids
* if found, returns position of id
* if not found, returns first position greater than id
*/
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = ids[0].mid;
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = IDL_CMP( id, ids[cursor].mid );
if( val < 0 ) {
n = pivot;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
return cursor;
}
}
if( val > 0 ) {
++cursor;
}
return cursor;
}
int mdb_id2l_insert( ID2L ids, ID2 *id )
{
unsigned x, i;
x = mdb_id2l_search( ids, id->mid );
assert( x > 0 );
if( x < 1 ) {
/* internal error */
return -2;
}
if ( x <= ids[0].mid && ids[x].mid == id->mid ) {
/* duplicate */
return -1;
}
if ( ids[0].mid >= MDB_IDL_UM_MAX ) {
/* too big */
return -2;
} else {
/* insert id */
ids[0].mid++;
for (i=ids[0].mid; i>x; i--)
ids[i] = ids[i-1];
ids[x] = *id;
}
return 0;
}