/* $NetBSD: ucdata.c,v 1.1.1.6.6.1 2019/08/10 06:17:15 martin Exp $ */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 1998-2019 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
/* Copyright 2001 Computing Research Labs, New Mexico State University
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COMPUTING RESEARCH LAB OR NEW MEXICO STATE UNIVERSITY BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
* OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
* THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Id: ucdata.c,v 1.4 2001/01/02 18:46:20 mleisher Exp " */
#include
__RCSID("$NetBSD: ucdata.c,v 1.1.1.6.6.1 2019/08/10 06:17:15 martin Exp $");
#include "portable.h"
#include "ldap_config.h"
#include
#include
#include
#include
#include
#include "lber_pvt.h"
#include "ucdata.h"
#ifndef HARDCODE_DATA
#define HARDCODE_DATA 1
#endif
#if HARDCODE_DATA
#include "uctable.h"
#endif
/**************************************************************************
*
* Miscellaneous types, data, and support functions.
*
**************************************************************************/
typedef struct {
ac_uint2 bom;
ac_uint2 cnt;
union {
ac_uint4 bytes;
ac_uint2 len[2];
} size;
} _ucheader_t;
/*
* A simple array of 32-bit masks for lookup.
*/
static ac_uint4 masks32[32] = {
0x00000001UL, 0x00000002UL, 0x00000004UL, 0x00000008UL,
0x00000010UL, 0x00000020UL, 0x00000040UL, 0x00000080UL,
0x00000100UL, 0x00000200UL, 0x00000400UL, 0x00000800UL,
0x00001000UL, 0x00002000UL, 0x00004000UL, 0x00008000UL,
0x00010000UL, 0x00020000UL, 0x00040000UL, 0x00080000UL,
0x00100000UL, 0x00200000UL, 0x00400000UL, 0x00800000UL,
0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL,
0x10000000UL, 0x20000000UL, 0x40000000UL, 0x80000000UL
};
#define endian_short(cc) (((cc) >> 8) | (((cc) & 0xff) << 8))
#define endian_long(cc) ((((cc) & 0xff) << 24)|((((cc) >> 8) & 0xff) << 16)|\
((((cc) >> 16) & 0xff) << 8)|((cc) >> 24))
#if !HARDCODE_DATA
static FILE *
_ucopenfile(char *paths, char *filename, char *mode)
{
FILE *f;
char *fp, *dp, *pp, path[BUFSIZ];
if (filename == 0 || *filename == 0)
return 0;
dp = paths;
while (dp && *dp) {
pp = path;
while (*dp && *dp != ':')
*pp++ = *dp++;
*pp++ = *LDAP_DIRSEP;
fp = filename;
while (*fp)
*pp++ = *fp++;
*pp = 0;
if ((f = fopen(path, mode)) != 0)
return f;
if (*dp == ':')
dp++;
}
return 0;
}
#endif
/**************************************************************************
*
* Support for the character properties.
*
**************************************************************************/
#if !HARDCODE_DATA
static ac_uint4 _ucprop_size;
static ac_uint2 *_ucprop_offsets;
static ac_uint4 *_ucprop_ranges;
/*
* Return -1 on error, 0 if okay
*/
static int
_ucprop_load(char *paths, int reload)
{
FILE *in;
ac_uint4 size, i;
_ucheader_t hdr;
if (_ucprop_size > 0) {
if (!reload)
/*
* The character properties have already been loaded.
*/
return 0;
/*
* Unload the current character property data in preparation for
* loading a new copy. Only the first array has to be deallocated
* because all the memory for the arrays is allocated as a single
* block.
*/
free((char *) _ucprop_offsets);
_ucprop_size = 0;
}
if ((in = _ucopenfile(paths, "ctype.dat", "rb")) == 0)
return -1;
/*
* Load the header.
*/
fread((char *) &hdr, sizeof(_ucheader_t), 1, in);
if (hdr.bom == 0xfffe) {
hdr.cnt = endian_short(hdr.cnt);
hdr.size.bytes = endian_long(hdr.size.bytes);
}
if ((_ucprop_size = hdr.cnt) == 0) {
fclose(in);
return -1;
}
/*
* Allocate all the storage needed for the lookup table.
*/
_ucprop_offsets = (ac_uint2 *) malloc(hdr.size.bytes);
/*
* Calculate the offset into the storage for the ranges. The offsets
* array is on a 4-byte boundary and one larger than the value provided in
* the header count field. This means the offset to the ranges must be
* calculated after aligning the count to a 4-byte boundary.
*/
if ((size = ((hdr.cnt + 1) * sizeof(ac_uint2))) & 3)
size += 4 - (size & 3);
size >>= 1;
_ucprop_ranges = (ac_uint4 *) (_ucprop_offsets + size);
/*
* Load the offset array.
*/
fread((char *) _ucprop_offsets, sizeof(ac_uint2), size, in);
/*
* Do an endian swap if necessary. Don't forget there is an extra node on
* the end with the final index.
*/
if (hdr.bom == 0xfffe) {
for (i = 0; i <= _ucprop_size; i++)
_ucprop_offsets[i] = endian_short(_ucprop_offsets[i]);
}
/*
* Load the ranges. The number of elements is in the last array position
* of the offsets.
*/
fread((char *) _ucprop_ranges, sizeof(ac_uint4),
_ucprop_offsets[_ucprop_size], in);
fclose(in);
/*
* Do an endian swap if necessary.
*/
if (hdr.bom == 0xfffe) {
for (i = 0; i < _ucprop_offsets[_ucprop_size]; i++)
_ucprop_ranges[i] = endian_long(_ucprop_ranges[i]);
}
return 0;
}
static void
_ucprop_unload(void)
{
if (_ucprop_size == 0)
return;
/*
* Only need to free the offsets because the memory is allocated as a
* single block.
*/
free((char *) _ucprop_offsets);
_ucprop_size = 0;
}
#endif
static int
_ucprop_lookup(ac_uint4 code, ac_uint4 n)
{
long l, r, m;
if (_ucprop_size == 0)
return 0;
/*
* There is an extra node on the end of the offsets to allow this routine
* to work right. If the index is 0xffff, then there are no nodes for the
* property.
*/
if ((l = _ucprop_offsets[n]) == 0xffff)
return 0;
/*
* Locate the next offset that is not 0xffff. The sentinel at the end of
* the array is the max index value.
*/
for (m = 1;
n + m < _ucprop_size && _ucprop_offsets[n + m] == 0xffff; m++) ;
r = _ucprop_offsets[n + m] - 1;
while (l <= r) {
/*
* Determine a "mid" point and adjust to make sure the mid point is at
* the beginning of a range pair.
*/
m = (l + r) >> 1;
m -= (m & 1);
if (code > _ucprop_ranges[m + 1])
l = m + 2;
else if (code < _ucprop_ranges[m])
r = m - 2;
else if (code >= _ucprop_ranges[m] && code <= _ucprop_ranges[m + 1])
return 1;
}
return 0;
}
int
ucisprop(ac_uint4 code, ac_uint4 mask1, ac_uint4 mask2)
{
ac_uint4 i;
if (mask1 == 0 && mask2 == 0)
return 0;
for (i = 0; mask1 && i < 32; i++) {
if ((mask1 & masks32[i]) && _ucprop_lookup(code, i))
return 1;
}
for (i = 32; mask2 && i < _ucprop_size; i++) {
if ((mask2 & masks32[i & 31]) && _ucprop_lookup(code, i))
return 1;
}
return 0;
}
/**************************************************************************
*
* Support for case mapping.
*
**************************************************************************/
#if !HARDCODE_DATA
/* These record the number of slots in the map.
* There are 3 words per slot.
*/
static ac_uint4 _uccase_size;
static ac_uint2 _uccase_len[2];
static ac_uint4 *_uccase_map;
/*
* Return -1 on error, 0 if okay
*/
static int
_uccase_load(char *paths, int reload)
{
FILE *in;
ac_uint4 i;
_ucheader_t hdr;
if (_uccase_size > 0) {
if (!reload)
/*
* The case mappings have already been loaded.
*/
return 0;
free((char *) _uccase_map);
_uccase_size = 0;
}
if ((in = _ucopenfile(paths, "case.dat", "rb")) == 0)
return -1;
/*
* Load the header.
*/
fread((char *) &hdr, sizeof(_ucheader_t), 1, in);
if (hdr.bom == 0xfffe) {
hdr.cnt = endian_short(hdr.cnt);
hdr.size.len[0] = endian_short(hdr.size.len[0]);
hdr.size.len[1] = endian_short(hdr.size.len[1]);
}
/*
* Set the node count and lengths of the upper and lower case mapping
* tables.
*/
_uccase_size = hdr.cnt;
_uccase_len[0] = hdr.size.len[0];
_uccase_len[1] = hdr.size.len[1];
_uccase_map = (ac_uint4 *)
malloc(_uccase_size * 3 * sizeof(ac_uint4));
/*
* Load the case mapping table.
*/
fread((char *) _uccase_map, sizeof(ac_uint4), _uccase_size * 3, in);
/*
* Do an endian swap if necessary.
*/
if (hdr.bom == 0xfffe) {
for (i = 0; i < _uccase_size * 3; i++)
_uccase_map[i] = endian_long(_uccase_map[i]);
}
fclose(in);
return 0;
}
static void
_uccase_unload(void)
{
if (_uccase_size == 0)
return;
free((char *) _uccase_map);
_uccase_size = 0;
}
#endif
static ac_uint4
_uccase_lookup(ac_uint4 code, long l, long r, int field)
{
long m;
const ac_uint4 *tmp;
/*
* Do the binary search.
*/
while (l <= r) {
/*
* Determine a "mid" point and adjust to make sure the mid point is at
* the beginning of a case mapping triple.
*/
m = (l + r) >> 1;
tmp = &_uccase_map[m*3];
if (code > *tmp)
l = m + 1;
else if (code < *tmp)
r = m - 1;
else if (code == *tmp)
return tmp[field];
}
return code;
}
ac_uint4
uctoupper(ac_uint4 code)
{
int field;
long l, r;
if (ucisupper(code))
return code;
if (ucislower(code)) {
/*
* The character is lower case.
*/
field = 2;
l = _uccase_len[0];
r = (l + _uccase_len[1]) - 1;
} else {
/*
* The character is title case.
*/
field = 1;
l = _uccase_len[0] + _uccase_len[1];
r = _uccase_size - 1;
}
return _uccase_lookup(code, l, r, field);
}
ac_uint4
uctolower(ac_uint4 code)
{
int field;
long l, r;
if (ucislower(code))
return code;
if (ucisupper(code)) {
/*
* The character is upper case.
*/
field = 1;
l = 0;
r = _uccase_len[0] - 1;
} else {
/*
* The character is title case.
*/
field = 2;
l = _uccase_len[0] + _uccase_len[1];
r = _uccase_size - 1;
}
return _uccase_lookup(code, l, r, field);
}
ac_uint4
uctotitle(ac_uint4 code)
{
int field;
long l, r;
if (ucistitle(code))
return code;
/*
* The offset will always be the same for converting to title case.
*/
field = 2;
if (ucisupper(code)) {
/*
* The character is upper case.
*/
l = 0;
r = _uccase_len[0] - 1;
} else {
/*
* The character is lower case.
*/
l = _uccase_len[0];
r = (l + _uccase_len[1]) - 1;
}
return _uccase_lookup(code, l, r, field);
}
/**************************************************************************
*
* Support for compositions.
*
**************************************************************************/
#if !HARDCODE_DATA
static ac_uint4 _uccomp_size;
static ac_uint4 *_uccomp_data;
/*
* Return -1 on error, 0 if okay
*/
static int
_uccomp_load(char *paths, int reload)
{
FILE *in;
ac_uint4 size, i;
_ucheader_t hdr;
if (_uccomp_size > 0) {
if (!reload)
/*
* The compositions have already been loaded.
*/
return 0;
free((char *) _uccomp_data);
_uccomp_size = 0;
}
if ((in = _ucopenfile(paths, "comp.dat", "rb")) == 0)
return -1;
/*
* Load the header.
*/
fread((char *) &hdr, sizeof(_ucheader_t), 1, in);
if (hdr.bom == 0xfffe) {
hdr.cnt = endian_short(hdr.cnt);
hdr.size.bytes = endian_long(hdr.size.bytes);
}
_uccomp_size = hdr.cnt;
_uccomp_data = (ac_uint4 *) malloc(hdr.size.bytes);
/*
* Read the composition data in.
*/
size = hdr.size.bytes / sizeof(ac_uint4);
fread((char *) _uccomp_data, sizeof(ac_uint4), size, in);
/*
* Do an endian swap if necessary.
*/
if (hdr.bom == 0xfffe) {
for (i = 0; i < size; i++)
_uccomp_data[i] = endian_long(_uccomp_data[i]);
}
/*
* Assume that the data is ordered on count, so that all compositions
* of length 2 come first. Only handling length 2 for now.
*/
for (i = 1; i < size; i += 4)
if (_uccomp_data[i] != 2)
break;
_uccomp_size = i - 1;
fclose(in);
return 0;
}
static void
_uccomp_unload(void)
{
if (_uccomp_size == 0)
return;
free((char *) _uccomp_data);
_uccomp_size = 0;
}
#endif
int
uccomp(ac_uint4 node1, ac_uint4 node2, ac_uint4 *comp)
{
int l, r, m;
l = 0;
r = _uccomp_size - 1;
while (l <= r) {
m = ((r + l) >> 1);
m -= m & 3;
if (node1 > _uccomp_data[m+2])
l = m + 4;
else if (node1 < _uccomp_data[m+2])
r = m - 4;
else if (node2 > _uccomp_data[m+3])
l = m + 4;
else if (node2 < _uccomp_data[m+3])
r = m - 4;
else {
*comp = _uccomp_data[m];
return 1;
}
}
return 0;
}
int
uccomp_hangul(ac_uint4 *str, int len)
{
const int SBase = 0xAC00, LBase = 0x1100,
VBase = 0x1161, TBase = 0x11A7,
LCount = 19, VCount = 21, TCount = 28,
NCount = VCount * TCount, /* 588 */
SCount = LCount * NCount; /* 11172 */
int i, rlen;
ac_uint4 ch, last, lindex, sindex;
last = str[0];
rlen = 1;
for ( i = 1; i < len; i++ ) {
ch = str[i];
/* check if two current characters are L and V */
lindex = last - LBase;
if (lindex < (ac_uint4) LCount) {
ac_uint4 vindex = ch - VBase;
if (vindex < (ac_uint4) VCount) {
/* make syllable of form LV */
last = SBase + (lindex * VCount + vindex) * TCount;
str[rlen-1] = last; /* reset last */
continue;
}
}
/* check if two current characters are LV and T */
sindex = last - SBase;
if (sindex < (ac_uint4) SCount
&& (sindex % TCount) == 0)
{
ac_uint4 tindex = ch - TBase;
if (tindex <= (ac_uint4) TCount) {
/* make syllable of form LVT */
last += tindex;
str[rlen-1] = last; /* reset last */
continue;
}
}
/* if neither case was true, just add the character */
last = ch;
str[rlen] = ch;
rlen++;
}
return rlen;
}
int
uccanoncomp(ac_uint4 *str, int len)
{
int i, stpos, copos;
ac_uint4 cl, prevcl, st, ch, co;
st = str[0];
stpos = 0;
copos = 1;
prevcl = uccombining_class(st) == 0 ? 0 : 256;
for (i = 1; i < len; i++) {
ch = str[i];
cl = uccombining_class(ch);
if (uccomp(st, ch, &co) && (prevcl < cl || prevcl == 0))
st = str[stpos] = co;
else {
if (cl == 0) {
stpos = copos;
st = ch;
}
prevcl = cl;
str[copos++] = ch;
}
}
return uccomp_hangul(str, copos);
}
/**************************************************************************
*
* Support for decompositions.
*
**************************************************************************/
#if !HARDCODE_DATA
static ac_uint4 _ucdcmp_size;
static ac_uint4 *_ucdcmp_nodes;
static ac_uint4 *_ucdcmp_decomp;
static ac_uint4 _uckdcmp_size;
static ac_uint4 *_uckdcmp_nodes;
static ac_uint4 *_uckdcmp_decomp;
/*
* Return -1 on error, 0 if okay
*/
static int
_ucdcmp_load(char *paths, int reload)
{
FILE *in;
ac_uint4 size, i;
_ucheader_t hdr;
if (_ucdcmp_size > 0) {
if (!reload)
/*
* The decompositions have already been loaded.
*/
return 0;
free((char *) _ucdcmp_nodes);
_ucdcmp_size = 0;
}
if ((in = _ucopenfile(paths, "decomp.dat", "rb")) == 0)
return -1;
/*
* Load the header.
*/
fread((char *) &hdr, sizeof(_ucheader_t), 1, in);
if (hdr.bom == 0xfffe) {
hdr.cnt = endian_short(hdr.cnt);
hdr.size.bytes = endian_long(hdr.size.bytes);
}
_ucdcmp_size = hdr.cnt << 1;
_ucdcmp_nodes = (ac_uint4 *) malloc(hdr.size.bytes);
_ucdcmp_decomp = _ucdcmp_nodes + (_ucdcmp_size + 1);
/*
* Read the decomposition data in.
*/
size = hdr.size.bytes / sizeof(ac_uint4);
fread((char *) _ucdcmp_nodes, sizeof(ac_uint4), size, in);
/*
* Do an endian swap if necessary.
*/
if (hdr.bom == 0xfffe) {
for (i = 0; i < size; i++)
_ucdcmp_nodes[i] = endian_long(_ucdcmp_nodes[i]);
}
fclose(in);
return 0;
}
/*
* Return -1 on error, 0 if okay
*/
static int
_uckdcmp_load(char *paths, int reload)
{
FILE *in;
ac_uint4 size, i;
_ucheader_t hdr;
if (_uckdcmp_size > 0) {
if (!reload)
/*
* The decompositions have already been loaded.
*/
return 0;
free((char *) _uckdcmp_nodes);
_uckdcmp_size = 0;
}
if ((in = _ucopenfile(paths, "kdecomp.dat", "rb")) == 0)
return -1;
/*
* Load the header.
*/
fread((char *) &hdr, sizeof(_ucheader_t), 1, in);
if (hdr.bom == 0xfffe) {
hdr.cnt = endian_short(hdr.cnt);
hdr.size.bytes = endian_long(hdr.size.bytes);
}
_uckdcmp_size = hdr.cnt << 1;
_uckdcmp_nodes = (ac_uint4 *) malloc(hdr.size.bytes);
_uckdcmp_decomp = _uckdcmp_nodes + (_uckdcmp_size + 1);
/*
* Read the decomposition data in.
*/
size = hdr.size.bytes / sizeof(ac_uint4);
fread((char *) _uckdcmp_nodes, sizeof(ac_uint4), size, in);
/*
* Do an endian swap if necessary.
*/
if (hdr.bom == 0xfffe) {
for (i = 0; i < size; i++)
_uckdcmp_nodes[i] = endian_long(_uckdcmp_nodes[i]);
}
fclose(in);
return 0;
}
static void
_ucdcmp_unload(void)
{
if (_ucdcmp_size == 0)
return;
/*
* Only need to free the offsets because the memory is allocated as a
* single block.
*/
free((char *) _ucdcmp_nodes);
_ucdcmp_size = 0;
}
static void
_uckdcmp_unload(void)
{
if (_uckdcmp_size == 0)
return;
/*
* Only need to free the offsets because the memory is allocated as a
* single block.
*/
free((char *) _uckdcmp_nodes);
_uckdcmp_size = 0;
}
#endif
int
ucdecomp(ac_uint4 code, ac_uint4 *num, ac_uint4 **decomp)
{
long l, r, m;
if (code < _ucdcmp_nodes[0]) {
return 0;
}
l = 0;
r = _ucdcmp_nodes[_ucdcmp_size] - 1;
while (l <= r) {
/*
* Determine a "mid" point and adjust to make sure the mid point is at
* the beginning of a code+offset pair.
*/
m = (l + r) >> 1;
m -= (m & 1);
if (code > _ucdcmp_nodes[m])
l = m + 2;
else if (code < _ucdcmp_nodes[m])
r = m - 2;
else if (code == _ucdcmp_nodes[m]) {
*num = _ucdcmp_nodes[m + 3] - _ucdcmp_nodes[m + 1];
*decomp = (ac_uint4*)&_ucdcmp_decomp[_ucdcmp_nodes[m + 1]];
return 1;
}
}
return 0;
}
int
uckdecomp(ac_uint4 code, ac_uint4 *num, ac_uint4 **decomp)
{
long l, r, m;
if (code < _uckdcmp_nodes[0]) {
return 0;
}
l = 0;
r = _uckdcmp_nodes[_uckdcmp_size] - 1;
while (l <= r) {
/*
* Determine a "mid" point and adjust to make sure the mid point is at
* the beginning of a code+offset pair.
*/
m = (l + r) >> 1;
m -= (m & 1);
if (code > _uckdcmp_nodes[m])
l = m + 2;
else if (code < _uckdcmp_nodes[m])
r = m - 2;
else if (code == _uckdcmp_nodes[m]) {
*num = _uckdcmp_nodes[m + 3] - _uckdcmp_nodes[m + 1];
*decomp = (ac_uint4*)&_uckdcmp_decomp[_uckdcmp_nodes[m + 1]];
return 1;
}
}
return 0;
}
int
ucdecomp_hangul(ac_uint4 code, ac_uint4 *num, ac_uint4 decomp[])
{
if (!ucishangul(code))
return 0;
code -= 0xac00;
decomp[0] = 0x1100 + (ac_uint4) (code / 588);
decomp[1] = 0x1161 + (ac_uint4) ((code % 588) / 28);
decomp[2] = 0x11a7 + (ac_uint4) (code % 28);
*num = (decomp[2] != 0x11a7) ? 3 : 2;
return 1;
}
/* mode == 0 for canonical, mode == 1 for compatibility */
static int
uccanoncompatdecomp(const ac_uint4 *in, int inlen,
ac_uint4 **out, int *outlen, short mode, void *ctx)
{
int l, size;
unsigned i, j, k;
ac_uint4 num, class, *decomp, hangdecomp[3];
size = inlen * 2;
*out = (ac_uint4 *) ber_memalloc_x(size * sizeof(**out), ctx);
if (*out == NULL)
return *outlen = -1;
i = 0;
for (j = 0; j < (unsigned) inlen; j++) {
if (mode ? uckdecomp(in[j], &num, &decomp) : ucdecomp(in[j], &num, &decomp)) {
if ( size - i < num) {
size = inlen + i - j + num - 1;
*out = (ac_uint4 *) ber_memrealloc_x(*out, size * sizeof(**out), ctx );
if (*out == NULL)
return *outlen = -1;
}
for (k = 0; k < num; k++) {
class = uccombining_class(decomp[k]);
if (class == 0) {
(*out)[i] = decomp[k];
} else {
for (l = i; l > 0; l--)
if (class >= uccombining_class((*out)[l-1]))
break;
AC_MEMCPY(*out + l + 1, *out + l, (i - l) * sizeof(**out));
(*out)[l] = decomp[k];
}
i++;
}
} else if (ucdecomp_hangul(in[j], &num, hangdecomp)) {
if (size - i < num) {
size = inlen + i - j + num - 1;
*out = (ac_uint4 *) ber_memrealloc_x(*out, size * sizeof(**out), ctx);
if (*out == NULL)
return *outlen = -1;
}
for (k = 0; k < num; k++) {
(*out)[i] = hangdecomp[k];
i++;
}
} else {
if (size - i < 1) {
size = inlen + i - j;
*out = (ac_uint4 *) ber_memrealloc_x(*out, size * sizeof(**out), ctx);
if (*out == NULL)
return *outlen = -1;
}
class = uccombining_class(in[j]);
if (class == 0) {
(*out)[i] = in[j];
} else {
for (l = i; l > 0; l--)
if (class >= uccombining_class((*out)[l-1]))
break;
AC_MEMCPY(*out + l + 1, *out + l, (i - l) * sizeof(**out));
(*out)[l] = in[j];
}
i++;
}
}
return *outlen = i;
}
int
uccanondecomp(const ac_uint4 *in, int inlen,
ac_uint4 **out, int *outlen, void *ctx)
{
return uccanoncompatdecomp(in, inlen, out, outlen, 0, ctx);
}
int
uccompatdecomp(const ac_uint4 *in, int inlen,
ac_uint4 **out, int *outlen, void *ctx)
{
return uccanoncompatdecomp(in, inlen, out, outlen, 1, ctx);
}
/**************************************************************************
*
* Support for combining classes.
*
**************************************************************************/
#if !HARDCODE_DATA
static ac_uint4 _uccmcl_size;
static ac_uint4 *_uccmcl_nodes;
/*
* Return -1 on error, 0 if okay
*/
static int
_uccmcl_load(char *paths, int reload)
{
FILE *in;
ac_uint4 i;
_ucheader_t hdr;
if (_uccmcl_size > 0) {
if (!reload)
/*
* The combining classes have already been loaded.
*/
return 0;
free((char *) _uccmcl_nodes);
_uccmcl_size = 0;
}
if ((in = _ucopenfile(paths, "cmbcl.dat", "rb")) == 0)
return -1;
/*
* Load the header.
*/
fread((char *) &hdr, sizeof(_ucheader_t), 1, in);
if (hdr.bom == 0xfffe) {
hdr.cnt = endian_short(hdr.cnt);
hdr.size.bytes = endian_long(hdr.size.bytes);
}
_uccmcl_size = hdr.cnt * 3;
_uccmcl_nodes = (ac_uint4 *) malloc(hdr.size.bytes);
/*
* Read the combining classes in.
*/
fread((char *) _uccmcl_nodes, sizeof(ac_uint4), _uccmcl_size, in);
/*
* Do an endian swap if necessary.
*/
if (hdr.bom == 0xfffe) {
for (i = 0; i < _uccmcl_size; i++)
_uccmcl_nodes[i] = endian_long(_uccmcl_nodes[i]);
}
fclose(in);
return 0;
}
static void
_uccmcl_unload(void)
{
if (_uccmcl_size == 0)
return;
free((char *) _uccmcl_nodes);
_uccmcl_size = 0;
}
#endif
ac_uint4
uccombining_class(ac_uint4 code)
{
long l, r, m;
l = 0;
r = _uccmcl_size - 1;
while (l <= r) {
m = (l + r) >> 1;
m -= (m % 3);
if (code > _uccmcl_nodes[m + 1])
l = m + 3;
else if (code < _uccmcl_nodes[m])
r = m - 3;
else if (code >= _uccmcl_nodes[m] && code <= _uccmcl_nodes[m + 1])
return _uccmcl_nodes[m + 2];
}
return 0;
}
/**************************************************************************
*
* Support for numeric values.
*
**************************************************************************/
#if !HARDCODE_DATA
static ac_uint4 *_ucnum_nodes;
static ac_uint4 _ucnum_size;
static short *_ucnum_vals;
/*
* Return -1 on error, 0 if okay
*/
static int
_ucnumb_load(char *paths, int reload)
{
FILE *in;
ac_uint4 size, i;
_ucheader_t hdr;
if (_ucnum_size > 0) {
if (!reload)
/*
* The numbers have already been loaded.
*/
return 0;
free((char *) _ucnum_nodes);
_ucnum_size = 0;
}
if ((in = _ucopenfile(paths, "num.dat", "rb")) == 0)
return -1;
/*
* Load the header.
*/
fread((char *) &hdr, sizeof(_ucheader_t), 1, in);
if (hdr.bom == 0xfffe) {
hdr.cnt = endian_short(hdr.cnt);
hdr.size.bytes = endian_long(hdr.size.bytes);
}
_ucnum_size = hdr.cnt;
_ucnum_nodes = (ac_uint4 *) malloc(hdr.size.bytes);
_ucnum_vals = (short *) (_ucnum_nodes + _ucnum_size);
/*
* Read the combining classes in.
*/
fread((char *) _ucnum_nodes, sizeof(unsigned char), hdr.size.bytes, in);
/*
* Do an endian swap if necessary.
*/
if (hdr.bom == 0xfffe) {
for (i = 0; i < _ucnum_size; i++)
_ucnum_nodes[i] = endian_long(_ucnum_nodes[i]);
/*
* Determine the number of values that have to be adjusted.
*/
size = (hdr.size.bytes -
(_ucnum_size * (sizeof(ac_uint4) << 1))) /
sizeof(short);
for (i = 0; i < size; i++)
_ucnum_vals[i] = endian_short(_ucnum_vals[i]);
}
fclose(in);
return 0;
}
static void
_ucnumb_unload(void)
{
if (_ucnum_size == 0)
return;
free((char *) _ucnum_nodes);
_ucnum_size = 0;
}
#endif
int
ucnumber_lookup(ac_uint4 code, struct ucnumber *num)
{
long l, r, m;
short *vp;
l = 0;
r = _ucnum_size - 1;
while (l <= r) {
/*
* Determine a "mid" point and adjust to make sure the mid point is at
* the beginning of a code+offset pair.
*/
m = (l + r) >> 1;
m -= (m & 1);
if (code > _ucnum_nodes[m])
l = m + 2;
else if (code < _ucnum_nodes[m])
r = m - 2;
else {
vp = (short *)_ucnum_vals + _ucnum_nodes[m + 1];
num->numerator = (int) *vp++;
num->denominator = (int) *vp;
return 1;
}
}
return 0;
}
int
ucdigit_lookup(ac_uint4 code, int *digit)
{
long l, r, m;
short *vp;
l = 0;
r = _ucnum_size - 1;
while (l <= r) {
/*
* Determine a "mid" point and adjust to make sure the mid point is at
* the beginning of a code+offset pair.
*/
m = (l + r) >> 1;
m -= (m & 1);
if (code > _ucnum_nodes[m])
l = m + 2;
else if (code < _ucnum_nodes[m])
r = m - 2;
else {
vp = (short *)_ucnum_vals + _ucnum_nodes[m + 1];
if (*vp == *(vp + 1)) {
*digit = *vp;
return 1;
}
return 0;
}
}
return 0;
}
struct ucnumber
ucgetnumber(ac_uint4 code)
{
struct ucnumber num;
/*
* Initialize with some arbitrary value, because the caller simply cannot
* tell for sure if the code is a number without calling the ucisnumber()
* macro before calling this function.
*/
num.numerator = num.denominator = -111;
(void) ucnumber_lookup(code, &num);
return num;
}
int
ucgetdigit(ac_uint4 code)
{
int dig;
/*
* Initialize with some arbitrary value, because the caller simply cannot
* tell for sure if the code is a number without calling the ucisdigit()
* macro before calling this function.
*/
dig = -111;
(void) ucdigit_lookup(code, &dig);
return dig;
}
/**************************************************************************
*
* Setup and cleanup routines.
*
**************************************************************************/
#if HARDCODE_DATA
int ucdata_load(char *paths, int masks) { return 0; }
void ucdata_unload(int masks) { }
int ucdata_reload(char *paths, int masks) { return 0; }
#else
/*
* Return 0 if okay, negative on error
*/
int
ucdata_load(char *paths, int masks)
{
int error = 0;
if (masks & UCDATA_CTYPE)
error |= _ucprop_load(paths, 0) < 0 ? UCDATA_CTYPE : 0;
if (masks & UCDATA_CASE)
error |= _uccase_load(paths, 0) < 0 ? UCDATA_CASE : 0;
if (masks & UCDATA_DECOMP)
error |= _ucdcmp_load(paths, 0) < 0 ? UCDATA_DECOMP : 0;
if (masks & UCDATA_CMBCL)
error |= _uccmcl_load(paths, 0) < 0 ? UCDATA_CMBCL : 0;
if (masks & UCDATA_NUM)
error |= _ucnumb_load(paths, 0) < 0 ? UCDATA_NUM : 0;
if (masks & UCDATA_COMP)
error |= _uccomp_load(paths, 0) < 0 ? UCDATA_COMP : 0;
if (masks & UCDATA_KDECOMP)
error |= _uckdcmp_load(paths, 0) < 0 ? UCDATA_KDECOMP : 0;
return -error;
}
void
ucdata_unload(int masks)
{
if (masks & UCDATA_CTYPE)
_ucprop_unload();
if (masks & UCDATA_CASE)
_uccase_unload();
if (masks & UCDATA_DECOMP)
_ucdcmp_unload();
if (masks & UCDATA_CMBCL)
_uccmcl_unload();
if (masks & UCDATA_NUM)
_ucnumb_unload();
if (masks & UCDATA_COMP)
_uccomp_unload();
if (masks & UCDATA_KDECOMP)
_uckdcmp_unload();
}
/*
* Return 0 if okay, negative on error
*/
int
ucdata_reload(char *paths, int masks)
{
int error = 0;
if (masks & UCDATA_CTYPE)
error |= _ucprop_load(paths, 1) < 0 ? UCDATA_CTYPE : 0;
if (masks & UCDATA_CASE)
error |= _uccase_load(paths, 1) < 0 ? UCDATA_CASE : 0;
if (masks & UCDATA_DECOMP)
error |= _ucdcmp_load(paths, 1) < 0 ? UCDATA_DECOMP : 0;
if (masks & UCDATA_CMBCL)
error |= _uccmcl_load(paths, 1) < 0 ? UCDATA_CMBCL : 0;
if (masks & UCDATA_NUM)
error |= _ucnumb_load(paths, 1) < 0 ? UCDATA_NUM : 0;
if (masks & UCDATA_COMP)
error |= _uccomp_load(paths, 1) < 0 ? UCDATA_COMP : 0;
if (masks & UCDATA_KDECOMP)
error |= _uckdcmp_load(paths, 1) < 0 ? UCDATA_KDECOMP : 0;
return -error;
}
#endif
#ifdef TEST
void
main(void)
{
int dig;
ac_uint4 i, lo, *dec;
struct ucnumber num;
/* ucdata_setup("."); */
if (ucisweak(0x30))
printf("WEAK\n");
else
printf("NOT WEAK\n");
printf("LOWER 0x%04lX\n", uctolower(0xff3a));
printf("UPPER 0x%04lX\n", uctoupper(0xff5a));
if (ucisalpha(0x1d5))
printf("ALPHA\n");
else
printf("NOT ALPHA\n");
if (ucisupper(0x1d5)) {
printf("UPPER\n");
lo = uctolower(0x1d5);
printf("0x%04lx\n", lo);
lo = uctotitle(0x1d5);
printf("0x%04lx\n", lo);
} else
printf("NOT UPPER\n");
if (ucistitle(0x1d5))
printf("TITLE\n");
else
printf("NOT TITLE\n");
if (uciscomposite(0x1d5))
printf("COMPOSITE\n");
else
printf("NOT COMPOSITE\n");
if (ucdecomp(0x1d5, &lo, &dec)) {
for (i = 0; i < lo; i++)
printf("0x%04lx ", dec[i]);
putchar('\n');
}
if ((lo = uccombining_class(0x41)) != 0)
printf("0x41 CCL %ld\n", lo);
if (ucisxdigit(0xfeff))
printf("0xFEFF HEX DIGIT\n");
else
printf("0xFEFF NOT HEX DIGIT\n");
if (ucisdefined(0x10000))
printf("0x10000 DEFINED\n");
else
printf("0x10000 NOT DEFINED\n");
if (ucnumber_lookup(0x30, &num)) {
if (num.denominator != 1)
printf("UCNUMBER: 0x30 = %d/%d\n", num.numerator, num.denominator);
else
printf("UCNUMBER: 0x30 = %d\n", num.numerator);
} else
printf("UCNUMBER: 0x30 NOT A NUMBER\n");
if (ucnumber_lookup(0xbc, &num)) {
if (num.denominator != 1)
printf("UCNUMBER: 0xbc = %d/%d\n", num.numerator, num.denominator);
else
printf("UCNUMBER: 0xbc = %d\n", num.numerator);
} else
printf("UCNUMBER: 0xbc NOT A NUMBER\n");
if (ucnumber_lookup(0xff19, &num)) {
if (num.denominator != 1)
printf("UCNUMBER: 0xff19 = %d/%d\n", num.numerator, num.denominator);
else
printf("UCNUMBER: 0xff19 = %d\n", num.numerator);
} else
printf("UCNUMBER: 0xff19 NOT A NUMBER\n");
if (ucnumber_lookup(0x4e00, &num)) {
if (num.denominator != 1)
printf("UCNUMBER: 0x4e00 = %d/%d\n", num.numerator, num.denominator);
else
printf("UCNUMBER: 0x4e00 = %d\n", num.numerator);
} else
printf("UCNUMBER: 0x4e00 NOT A NUMBER\n");
if (ucdigit_lookup(0x06f9, &dig))
printf("UCDIGIT: 0x6f9 = %d\n", dig);
else
printf("UCDIGIT: 0x6f9 NOT A NUMBER\n");
dig = ucgetdigit(0x0969);
printf("UCGETDIGIT: 0x969 = %d\n", dig);
num = ucgetnumber(0x30);
if (num.denominator != 1)
printf("UCGETNUMBER: 0x30 = %d/%d\n", num.numerator, num.denominator);
else
printf("UCGETNUMBER: 0x30 = %d\n", num.numerator);
num = ucgetnumber(0xbc);
if (num.denominator != 1)
printf("UCGETNUMBER: 0xbc = %d/%d\n", num.numerator, num.denominator);
else
printf("UCGETNUMBER: 0xbc = %d\n", num.numerator);
num = ucgetnumber(0xff19);
if (num.denominator != 1)
printf("UCGETNUMBER: 0xff19 = %d/%d\n", num.numerator, num.denominator);
else
printf("UCGETNUMBER: 0xff19 = %d\n", num.numerator);
/* ucdata_cleanup(); */
exit(0);
}
#endif /* TEST */